
POMDPy: An Extensible Framework for Implementing
Partially-Observable Markov Decision Processes in Python

Patrick Emami1, Alan J. Hamlet2, and Carl D. Crane3

Abstract— As of late, there has been a surge of interest in
finding solutions to complex problems pertaining to planning
and control under uncertainty. A popular way to approach
this task is to formulate the problem at hand as a partially-
observable Markov decision process (POMDP). Indeed, a
plethora of research has been dedicated towards finding ways
to circumvent the curse of dimensionality and curse of history
that plagued early approaches to solving POMDPs. The purpose
behind creating POMDPy has been to develop an easy-to-use,
open-source software framework that will allow researchers
to benchmark state-of-the-art solvers on custom problems and
to add their own innovative solutions to a growing collection.
This work has also been motivated by the desire to see
these algorithms integrated into systems that solve real-world
problems. POMDPy’s default solver uses Monte-Carlo Tree-
Search to help it scale to high-dimensional problems.

We chose to use Python to develop POMDPy due to Python’s
rapidly-growing popularity in the scientific community, easy-
to-read syntax, portability, and the abundance of useful nu-
merical libraries. Python also allows POMDPy to interface
easily with many different technologies, including ROS and
Tensorflow. Source code for POMDPy can be found at http:
//pemami4911.github.io/POMDPy/

I. INTRODUCTION

This article introduces POMDPy, an open-source software
framework for solving POMDPs that aims to facilitate further
research in planning and control under uncertainty. POMDPy
provides a platform for developing, testing, and analyzing
new POMDP algorithms. The framework’s default solver
offers a slightly modified version of the popular POMCP [15]
algorithm as an implementation of a discrete POMDP solver.
It also contains an implementation of Lark’s Pruning Algo-
rithm [5] for performing classic Value Iteration. It should be
noted that the framework was designed in such a way as
to make it straightforward to implement continuous solvers
as well. The framework currently supports testing with two
benchmark problems, the RockSample and Tiger problems.
A presentation of results on the RockSample problem is
provided in Section 3.

Up to now there has been a lack of easy-to-use and
extensible platforms for implementing POMDPs. As a result,
researchers often resort to implementing their own solvers
entirely from scratch. The most widely used framework was
created by A. R. Cassandra [4]. One of the main contri-
butions of Cassandra’s POMDP software framework was

1Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL, U.S.A pemami@ufl.edu

2Department of Mechanical and Aerospace Engineering, University of
Florida, Gainesville, FL, U.S.A. AJHamlet@ufl.edu

3Department of Mechanical and Aerospace Engineering, University of
Florida, Gainesville, FL, U.S.A. Carl.Crane@gmail.com

that it defined a unique file format for simplifying the task
of providing the parameters required to specify a POMDP
problem. This file format has been used by many researchers
in an effort to make their experiments repeatable. However,
the model for the POMDP must be explicitly defined in
this config file, which limits this framework from scaling
up to larger problem domains. In contrast, one of POMCP’s
defining characteristics is that it can interface with a ”black-
box” simulator for learning transition probabilities. The
benefits of using a simulator will be discussed in more detail
in Section 2. All of the solvers in Cassandra’s framework use
the basic dynamic programming approach, and many of the
algorithms rely heavily on linear programming.

Another planning and control software framework that
has been used in the literature is GPT (General Planning
Tool) [2]. It uses a typed logical language for describing
problems in a high-level manner. While GPT has been used
to solve POMDPs, as seen by the implementation of the
approximate POMDP solver RTDP-Bel [3], it is more often
used for solving planning problems with A* search and
probabilistic planning problems with a heuristic called Real-
Time Dynamic Programming.

Other open-source software frameworks of note include
the Multi-Agent Decision Process toolbox [17] for solving
Dec-POMDPs and the TAPIR toolkit [7], which offers an
implementation of the Adaptive Belief Tree (ABT) and Gen-
eralized Pattern Search-ABT (GPS-ABT) algorithms. The
core of the ABT algorithm also pulls heavily from POMCP;
some of the inspiration for the POMDPy framework was de-
rived from TAPIR. More recently, the Approximate POMDP
Planning Toolkit (APPL) has gained popularity; it is a solver
written in C++ that implements some recent high-performing
algorithms such as DESPOT [16].

The rest of the paper is structured as follows. Section
2 provides an introduction to POMDPs and an overview
of POMDPy’s implementation of the POMCP algorithm.
Section 3 presents experimental results from the RockSample
benchmark problem. Section 4 details how POMDPy can
be used and extended by other researchers in the field, and
Section 5 concludes the article with a discussion on how
POMDPy will be used to accelerate research in other areas
of planning and control.

II. BACKGROUND

A. POMDPs

When a robot, or agent, is attempting to solve a planning
or control problem, it often uses sensors to obtain noisy
measurements of its environment. By modeling this problem

http://pemami4911.github.io/POMDPy/
http://pemami4911.github.io/POMDPy/
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

at a high level as a POMDP, the agent is able to account for
the inherent uncertainty in the measurements it obtains. More
specifically, a POMDP can be described by the following
[11], [13], [18]:

For simplicity, all events that occur at timestep t will be
denoted by a subscript.
• State, The current state of the world, denoted by s ∈ S.
• Action, The agent executes certain actions, denoted by
a ∈ A.

• Observation, Through sensors, the agent can obtain a
noisy measurement o ∈ O of the world’s state.

• Reward, In each state s, the agent receives a reward
r(s) ∈ R. In some cases, however, the reward is also
dependent on the the action a taken from s, and the
reward is given by r(s, a).

POMDPs are further characterized by the following dis-
tributions:
• The transition model, A specification of the outcome

probabilities for each action in each possible state, de-
noted by T (st+1, at, st). We will assume that transitions
are Markovian, in the sense that reaching state s′ after
selecting action a is only contingent on state s, and not
on the history of earlier states.

• The observation model, A specification of the proba-
bilities of perceiving the observation o in state s after
choosing action a, denoted by O(st, at, ot).

• The initial state distribution, Pr(s0), which speci-
fies the initial distribution of states at time t = 0.

A policy π is a solution to a POMDP that details each
action an agent should choose given a belief state. A belief
state b is a probability distribution over all possible states.
Given the current belief state b(s), the next belief state is
calculated by a belief update given by:

bt+1(st+1) = αO(st, at, ot)
∑
s

T (st+1, at, st)b(st) (1)

where α is a normalizing constant to make the belief state
sum to 1.

For the discounted infinite-horizon problem setting,
the overall goal of solving the POMDP is to find an
optimal policy that maximizes an agent’s expected total
future reward. The planning horizon can be set by the
discount factor γ ∈ (0, 1). The value function for a policy π
is thereby computed as

V (b, π) =

∞∑
t=0

E[γtR(st, at)|b, π] (2)

Hence, the agent seeks a policy π* that maximizes V (b, π):

π* = argmax
π

V (b, π) (3)

Discrete real-world planning problems tend to have in-
credibly large state spaces; a simple 10 × 10 grid world
with 10 available actions at each state has a transition model
of magnitude 105. A continuous planning problem has an
infinite state space. This rapid blow-up of the magnitude

of the state space for a planning problem is known as the
curse of dimensionality. Consequently, the transition and
observation models are not able to be specified explicitly
for these problems and solving (1) becomes computationally
intractable.

The curse of history that inevitably befalls many
POMDP solvers is due to the fact that the number of histories
that must be evaluated is exponential in the planning horizon.
A history H is a sequence of states, actions, observations,
and rewards. A single history entry, ht ∈ H , consists of a
tuple (st+1, at, ot, rt).

A large amount of research has been dedicated towards
breaking both of these curses. A popular approach is to use
Monte-Carlo sampling from a simulator [8], [9], [15], [20],
[18]. The POMCP algorithm introduced in [15] uses this
method; experimentation showed that it scaled significantly
better than SARSOP [10], a top-performing full-width offline
planner, on the Rocksample problem [15]. POMCP’s promis-
ing results were why we chose to use an implementation of
it as the default algorithm for the POMDPy framework.

B. Overview of POMDPy’s Implementation of POMCP

For a full description of POMCP and proofs of conver-
gence, see [15]. The defining characteristics of this algorithm
that will be mentioned in this paper are the simulator and
the use of Monte-Carlo Tree Search (MCTS) [6].

1) Learning Transitions from Simulation: Consider a
simulator S that provides a sample of a successor
state, observation, and reward given a state and action,
(st+1, ot+1, rt+1) ∼ S(st, at). This simulator is used to gen-
erate sequences of experiences, known as history sequences
or episodes. In turn, these are used to update the value
function without ever having to look inside the black box that
acts in place of an explicit transition and observation model.
The simulator is a key component of POMCP and many other
modern day Reinforcement Learning algorithms; solvers that
do not explicitly define a transition and observation model
are able to navigate around the curse of dimensionality
effectively. If a simulator is able to be obtained for a highly-
dimensional planning or control problem, then the added
computational complexity induced by the size of the state
space becomes negligible.

2) Monte-Carlo Tree Search: MCTS is an algorithm that
consists of iteratively running random simulations from the
root position of a search tree [6]. Central to the success
of MCTS is the action-selection process; if exploration is
handled appropriately, then MCTS converges to the optimal
policy. Figures 1 and 2 are illustrations of POMDPy’s
implementation of MCTS.

POMDPy creates a belief search tree Bt consisting of
belief nodes Bn and action nodes An. Each Bn represents
a belief state.The root node of Bt represents the agent’s
current belief state, which is approximated by a point-set
of state particles generated by sampling from the initial state
distribution Pr(s0). The Bn that are direct descendants of
the root node are candidates for the agent’s next future belief

Bn

An

Bn Bn

An

Bn

An

Bn

An

Bn Bn

Bt

S={1, 3, 2, 1, 1}

: V = 3, N = 4V = -1, N = 2 :

: V = 0, N = 1
: V = 1, N = 2

S={1, 1, 1, 2}S={2} S={3}

a1

o1 o2

a1

o1

a2

o2

a2

o1 o2

Fig. 1. A depiction of the POMDPy belief search tree in an environment
containing 3 states, 2 actions and 2 observations. The root of the search
tree is the agent’s current belief state; the agent performs simulations to
expand the tree. The expected values of choosing actions a1 and a2 from
the current belief state are given by their mean return.

Bn

An

Bn Bn

Bt’

: V = 3, N = 4

: V = 1, N = 2

S={1, 1, 1, 2}

a2

o2

a2

o1 o2

Fig. 2. The agent uses the belief search tree to select a real action (a2)
and real observation (o2) from the current belief state in order to carry out
a belief update. The remainder of the tree is pruned, and the new root of the
search tree becomes the selected belief node. Particle reinvigoration may be
needed to replenish the state particles for the new root of the search tree.

state. The path through Bt from the root node to a leaf node
represents a history sequence h.

The belief search tree Bt is constructed by running multi-
ple simulations. Each simulation is carried out by sampling
a random state st from the current belief state distribution
and generating a history sequence by means of continuously
running state samples through the generative model. The
sampled state st is added to the particle set of the first
new belief node Bn encountered during that simulation. The
agent’s current belief state is updated through a particle-
filtering process after a specified number of simulations have
been run or a time-limit has been reached. At this point,
an action at extending from the agent’s current belief state
is chosen by an action-selection strategy and executed. A
corresponding observation ot+1 is observed and a new belief
state is reached, corresponding to one of the belief nodes Bn
added to Bt during the simulations. The other unreachable
nodes in Bt are pruned away. The new belief state’s particle
set is reinvigorated to ensure that it contains a minimum

number of particles. This is done by uniformly sampling a
state st from the old belief state and passing st into the
simulator to obtain a successor state st+1 and observation
ot+1 from (st+1, ot+1, rt) ∼ S(st, at). If the real observation
and simulated observations match, the successor state st+1

is added to the particle set of the new belief state. This
approximation to the belief state approaches the true belief
state in the limit of the number of state particles used in the
particle set.

Every action ai, i = 1, ..., N where N is the number of
legal actions that can be taken from a belief node, specifies
a mapping from a belief node Bn to an action node An.
An action node An is mapped to future belief states by
observations oj , j = 1, ...,M where M is the number of
observations that can be obtained from the current action
node An. Each action-mapping keeps track of its current
value Q(b, a) and the number of times the action has been
tried N(b, a). An overall count N(b) =

∑
aN(b, a) is also

kept, which contains the number of times any action has been
chosen from the belief node in question.

A uniform rollout strategy is used to expand unexplored
belief nodes during simulation; once all actions from a
belief node have been attempted at least once, the UCB1
algorithm [8] can be used for action-selection. The idea
behind the UCB1 algorithm is to view each belief node
in Bt as a multi-armed bandit; therefore, an exploration
bonus is added to actions that have been tried relatively few
times [1]. The augmented action value Q∗(b, a) is given by
Q(b, a)+c

√
logN(b)/N(b, a). The scalar constant c controls

the ratio of exploration to exploitation during action selection
[15]; when c is small, the exploration bonus is negligible
and UCB1 algorithm acts greedily. Once all of the actions
from a belief node have been tried, UCB1 selects the action
maximizing the augmented action value, argmaxaQ

∗(b, a).
For a proof of the convergence of UCB1 algorithm to the
optimal value function, see [1]. During experimentation, it
was observed that UCB1 with a c value set to 3.0 showed
a significant speed-up over greedy action-selection when the
problem size was very large.

At the end of each simulation, the rewards observed after
each step of the generated history sequence are propagated
back up the belief tree in the form of a Q-update. Let
Q represent Q(b, a), Q′ represent Q(b′, a′), N represent
N(b, a), and r represent r(b, a). The Q-update is performed
by using the Q-learning rule, as seen in [13]:

Q := Q+
α

1 +N
(r + γ argmax

a′
Q′ −Q) (4)

Here, γ is the discount factor and r(b, a) is the immediate
reward obtained by choosing action a while in belief state b.
The system was naturally quite sensitive to the choice of α,
the step-size, and selection of its value required significant
fine-tuning.

III. EXPERIMENTATION

To show off the functionality of POMDPy, we applied
our solver to the benchmark RockSample problem. For each

problem size and each action-selection strategy, we ran
POMDPy for 12 hours of total computation time. Experi-
ments were ran on a Intel Core i7-3610QM @ 2.30 GHz
with 8 GB of RAM. The metrics used to assess performance
were the total average discounted and undiscounted reward,
and the average time per run. With 1000 simulations per step
for a given history sequence, the solver took approximately
6 seconds to calculate the next action to during a run. No
comparisons were made with other state-of-the-art POMDP
solvers, because the purpose of the experimentation was
mainly to act as a proof of concept for POMDPy. Results
comparing POMCP with other solvers can be found in [15].
The performance benchmark used for our experimentation
was simply carrying out the simulations without any tree. A
rollout algorithm was used the entire time, where the agent
would choose the legal action that maximized their average
expected return after sampling all actions that could be taken
from each state. Our results are presented in Table 1.

The UCB1 exploration constant for our solver was set to
c = 3.0. The discount horizon was set to 0.01, which equates
to γ = 0.95. The choice of step-size varied with the size
of the problem. For RockSample(7, 8), we found that α =
0.4 provided the best results. For Rocksample(11, 11) and
RockSample(15, 15), we used α = 0.6. These values were
hand-tuned after extensive experimentation.

The RockSample(n, k) problem simulates a rover explor-
ing unknown terrain. The environment is discretized as an
n x n grid containing k rocks. The task is to determine
which rocks are valuable, take samples of the valuable rocks,
and then leave the map to the east when no other rocks are
deemed worthwhile to investigate. Additionally, the agent has
a sensor that allows it to check rocks near itself to assess
whether there are rocks worth exploring nearby. In practice,
the agent’s initial belief state is a uniformly-sampled vector
that encodes the current estimation of the state of each of
the k rocks.

On RockSample(7, 8) and RockSample(11, 11), the UCB1
and greedy strategies performed comparably well. However,
on RockSample(15, 15), the solver using UCB1 was able to
complete 20 runs compared to only 13 runs by the solver
using the greedy action-selection strategy. On average, the
UCB1 solver finished runs 30 minutes faster for this problem
size. Since the UCB1 algorithm encourages exploration, it
allows the agent to explore the state space much more
effectively than the greedy strategy does; this advantage is
crucial for problems such as this one that have over 7 million
states.

IV. CONTRIBUTIONS TO THE COMMUNITY

A. Using POMDPy

The POMDPy software framework currently has a number
of different uses. First and foremost, it allows users of the
software to rapidly implement and test their own POMDP
problems with POMDPy’s implementation of the POMCP
solver. Users are able to choose how they would like to
specify the set of all actions, states, and observations; by

default, actions and observations are represented by an enu-
merated set. The majority of the programming work that the
researcher must undertake is to simply to extend an abstract
Model class that describes the simulator, and optionally to
extend an abstract HistoryData class. Defining a concrete
implementation of the Model class allows users to generate
history sequences for their problem. The simulator for the
RockSample problem parses a text file that contains the
n x n grid with the points of interest marked accordingly;
this encodes all of the transition probabilities of the POMDP,
saving the implementer a large amount of work. The Histo-
ryData class allows the user to encapsulate data obtained
by observations and define domain-specific behaviors that
affect belief updates; however, in some instances the effect
of an observation on generating the next history entry can
be handled entirely by the generative model. In the future,
POMDPy’s public API will be simplified further to make
it even easier to use, by providing users with the ability
to specify a problem and desired solver through a single
interface.

POMDPy’s design is intended to make it simple to test
state-of-the-art solvers against each other. The framework is
abstracted in such a way that there is a separation between
the abstract components that make up a general POMDP and
the various concrete implementations. Therefore, if a user
would like to test their own solver against one of POMDPy’s
solvers, they only need to extend the abstract POMDP
components as needed to implement their own algorithm.
Additionally, a user has the ability to change the granularity
of customization; if they would like to compare an action-
selection strategy against the UCB1 algorithm, they are also
able to easily swap out action-selection strategies within
the framework and compare results. POMDPy conveniently
keeps track of statistics during run-time, which can be easily
plotted with Python’s matplotlib package.

In summary, POMDPy is a work-in-progress that aims
to bring POMDPs closer to integration with real-world
problems. The next section describes the steps that are being
taken to achieve this.

B. Extending POMPDy

POMDPy fills the need for an open-source, community-
driven platform that will keep POMDPs relevant. Naturally,
one of the main attractions of POMDPy is its extensibility. It
is our intention that this software framework be continuously
built up over time by the community so that it remains on the
cutting-edge of POMDP research. For example, the default
POMDP implementation currently supports only discrete
planning and control problems; however, the framework is
designed in such a way that adding support for continuous
POMDPs is straightforward. As benchmark problems move
more towards real-world robotic planning and control prob-
lems, continuous-space POMDPs will begin to be seen more
regularly.

The POMDPy framework will also benefit from the
addition of new POMDP solvers and heuristics as more
research is conducted in this area. A potential addition to

RockSample(7, 8) RockSample(11, 11) RockSample(15, 15)
States|S| 12,544 247,808 7,372,800
Action− selection UCB1 Greedy UCB1 Greedy UCB1 Greedy
Ave. Time/Run (sec) 230.88 207.07 711.17 686.67 2489.75 3866.15
Runs 188 209 61 63 20 13
Ave. Discounted Return 8.29 ± 0.478 7.58 ± 0.422 3.42 ± 0.56 4.35 ± 0.47 2.06 ± 0.398 2.07 ± 0.621
Ave. Undiscounted Return 27.9 ± 0.984 25.0 ± 0.875 34.9 ± 2.04 34.9 ± 1.45 44.0 ± 2.39 41.5 ± 4.85

TABLE I
RESULTS FROM RUNNING ROCKSAMPLE WITH THREE DIFFERENT CONFIGURATIONS. EACH EXPERIMENT RAN FOR 12 HOURS WITH 1000

SIMULATIONS PER STEP.

the framework would be an implementation of SARSOP
[10], DESPOT [16], ABT [11] and GPS-ABT [14] from
Kurniawati et al. SARSOP is an excellent offline POMDP
solver to use as a benchmark for testing new solvers against.
ABT provides real-time POMDP re-planning functionality
that makes these planning algorithms much more useful
when tested on real-world applications. GPS-ABT provides
an initial look at how current state-of-the-art POMDP solvers
can be extended to continuous action spaces.

Finally, adding on to POMDPy’s library of sample prob-
lems will provide researchers with a thorough testing suite
for their contributions to the literature. Currently, POMDPy
has two popular benchmark POMDP problems to test
against; the RockSample problem and Tiger Problem. See
[19] for an explanation of the Tiger Problem.

V. CONCLUSION

The purpose of this research is to introduce a novel,
extensible POMDP software framework. POMDPy offers
an implementation of the popular POMCP algorithm as a
default solver. It is our intention for POMDPy to act as
a centralized location for future POMDP research. Some
other areas of POMDP research that we believe should be
integrated into POMDPy include heirarchical POMDPs [20]
and the computation of large-scale MCTS in parallel on
GPUs [12]. NVIDIA offers CUDA Python, which allows
scientists to utilize NVIDIA GPUs while maintaining the
CUDA layer underneath Python. Taking a heirarchical ap-
proach to framing robotic planning and control problems
allows highly-complex tasks to be broken down into more
manageable sub-problems. The concept of breaking down
a planning problem into a structured heirarchy of smaller
planning problems is reminiscent of certain cognitive theories
that attempt to explain the way in which our own brains
process tasks as simple as reaching for and picking up
small wooden blocks. This helps to prove the intuitiveness
of this branch of robotics. Research on parallelizing large-
scale MCTS will be especially useful for finding solu-
tions to continuous-space POMDPs, and is currently being
looked at to be added to POMDPy. Artificial neural-networks
have been previously employed in order to approximate the
highly-nonlinear Q-function for a continuous planner; much
excitement has been generated as of late over deep learning
networks due to the performance speed-ups offered by GPUs.
This is another area that we hope POMDPy will cover as
well. There are many promising and exciting avenues of

research on POMDPs mentioned in this paper; many others
were not mentioned. We hope that POMDPy will contribute
signficantly to the task of integrating these ideas in order
to accelerate the widespread adoption of POMDPs to real-
world robotic planning and control problems. POMDPy will
be continuously improved upon so that it facilitates research
in all of these areas.

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine learning, 47(2-3):235–256,
2002.

[2] B. Bonet and H. Geffner. Gpt: a tool for planning with uncertainty
and partial information. In Proc. IJCAI-01 Workshop on Planning with
Uncertainty and Partial Information, pages 82–87, 2001.

[3] B. Bonet and H. Geffner. Solving pomdps: Rtdp-bel vs. point-based
algorithms. In IJCAI, pages 1641–1646, 2009.

[4] A. Cassandra. Partially observable markov decision process, 2009.
[5] A. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning:

A simple, fast, exact method for partially observable markov decision
processes. In Proceedings of the Thirteenth conference on Uncertainty
in artificial intelligence, pages 54–61. Morgan Kaufmann Publishers
Inc., 1997.

[6] R. Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In Computers and games, pages 72–83. Springer, 2007.

[7] D. Klimenko and J. S. and. H. Kurniawati. Tapir: A software toolkit
for approximating and adapting pomdp solutions online. In Proc.
Australasian Conference on Robotics and Automation, 2014.

[8] L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. In
Machine Learning: ECML 2006, pages 282–293. Springer, 2006.

[9] H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee. Motion planning under
uncertainty for robotic tasks with long time horizons. The International
Journal of Robotics Research, 30(3):308, 2011.

[10] H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.
In Robotics: Science and Systems, volume 2008. Zurich, Switzerland,
2008.

[11] H. Kurniawati and V. Yadav. An online pomdp solver for uncertainty
planning in dynamic environment. In Proc. Int. Symp. on Robotics
Research, 2013.

[12] K. M. Rocki. Large scale monte carlo tree search on gpu. 2012.
[13] S. Russell and P. Norvig. Artificial intelligence: a modern approach

(2nd edition). Prentice Hall.
[14] K. M. Seiler, H. Kurniawati, and S. P. Singh. An online and

approximate solver for pomdps with continuous action space. 2015.
[15] D. Silver and J. Veness. Monte-carlo planning in large pomdps. In

Advances in Neural Information Processing Systems, pages 2164–
2172, 2010.

[16] A. Somani, N. Ye, D. Hsu, and W. S. Lee. Despot: Online pomdp
planning with regularization. In Advances in neural information
processing systems, pages 1772–1780, 2013.

[17] M. T. Spaan and F. A. Oliehoek. The multiagent decision process tool-
box: software for decision-theoretic planning in multiagent systems.
In Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision
Making in Uncertain Domains (MSDM), pages 107–121, 2008.

[18] S. Thrun. Monte carlo pomdps. In NIPS, volume 12, pages 1064–
1070, 1999.

[19] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[20] N. A. Vien and M. Toussaint. Hierarchical monte-carlo planning. 2015.

	Introduction
	Background
	POMDPs
	Overview of POMDPy's Implementation of POMCP
	Learning Transitions from Simulation
	Monte-Carlo Tree Search

	Experimentation
	Contributions to the Community
	Using POMDPy
	Extending POMPDy

	Conclusion
	References

