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Abstract

Discrete optimal transport has rich geometric interpretations that can
be exploited to develop fast algorithms for a variety of problems. In this
survey, I present the recent literature on network flow algorithms that use
computational geometry to find exact and approximate transportation
plans in subcubic running times. Additionally, I introduce the theory
of entropy-regularized discrete optimal transport to highlight how the
transportation problem is being used in fields such as machine learning.
An outline for a streaming version of a fast, planar transportation algorithm
is provided in the conclusions.
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1 Introduction

The optimal transport problem, originally proposed by Monge in 1781 [1], asks
how to most efficiently move a supply of an object (e.g., a pile of dirt) to
another location (e.g., a hole). In our society, optimal transportation problems
concerning people, commodities, and information are solved at a global scale on
a daily basis. Indeed, it is practical applications that have driven much of the
theoretical progress in this field. During World War II, Hitchcock, Koopmans,
and Kantorovich made significant progress on the problem by formalizing it
as a linear program. The contributions of Villani [2] has helped to popularize
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optimal transport, especially since he won the Fields medal in 2010. Optimal
transport has been used for many applications, and has recently become useful
in many areas of computer vison/graphics and machine learning. In machine
learning, the transportation distance, or Earth Mover’s Distance (EMD), offers
a powerful, geometrically-motivated metric for probability measures. However,
most of the interesting uses for the transportation problem in this area are either
high-dimensional or require running with millions or billions of data points.
Hence, even though many polynomial-time algorithms exist for solving linear
programs, there is still ongoing research on developing faster algorithms for
the transportation problem that scale in the era of big data. Improvements
in our capability to efficiently solve linear programs usually results in faster
algorithms for transportation, matching, assignment, and network flow problems
(see, e.g., [3]). I refer the reader to §4 of a recent survey on various geometric
optimization algorithms by Agarwal et. al. [4] for another in-depth review of
the transportation problem.

In the remainder of this section, I establish the setting for the geometric
transportation problem. Then, the next section will present various algorithms
for this problem based on network flow and computational geometry. This
will be followed by a brief motivation of the entropy-regularized version of the
discrete transportation problem. I conclude with a discussion on future research
directions.

We define sets A,B ⊂ Rd, |A| = |B| = n, and let a ∈ A have demand da ∈ Z+

and b ∈ B have supply sb ∈ Z+. I assume that
∑
a∈A da =

∑
b∈B sb = U and that

a ”ground distance” d(·, ·) has been specified. Let P be the n×n transportation
matrix, also known as the transportation plan, whose entries pba ≥ 0 contain
the counts of how much of each supply sb is sent to satisfy demand da. Each
row sums to some fixed rb, and each column sums to some fixed ca; the sum of
the rb’s and the sum of the ca’s is U . The Hitchcock-Koopmans transportation
problem, which seeks a minimum cost transportation plan, can be written as
the following linear program:

C(P ) = min
P

∑
a∈A

∑
b∈B

pbad(a, b),

s.t.
∑
a∈A

pba = rb,∑
b∈B

pba = ca,

pba ≥ 0.

(1)

where C(P ) is the optimal transportation distance, or EMD. Throughout most
of this paper, I use terminology from network flow algorithms, so at this point
it will be helpful to highlight the connection between geometric transportation
and network flow. The key relationship is between the transportation plan and
the flow through the network from sources b ∈ B to sinks a ∈ A. Equation 1
can be re-written by replacing pba with fba, where fba is the flow from b to a.
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Then the problem becomes one of finding the minimum cost flow. The flows are
uncapacitated, and the amount of flow originating from each source is given by
sb and the amount that each sink accepts is da. In the network flow formulation
of the transportation problem, it is typically assumed that the bipartite graph
formed by A and B is complete. While the two problems have many similarities,
one of the difficulties that the transportation problem has that the matching
problem does not is that flow can enter or exit a node by multiple edges. I
discuss various approaches for solving the geometric transportation problem that
make use of matching or network flow algorithms as subroutines.

Before I begin discussing the computational complexity of algorithms for the
transportation problem, it is useful to discuss some baselines for comparison. In
general, the transportation problem can be solved with generic algorithms such
as the Hungarian method in O(|V ||E|) time; for complete bipartite graphs, this is
equivalent to O(n3). Other generic approaches can achieve slightly faster bounds
by exploiting characteristics of the inputs, e.g., Gabow and Tarjan’s well-known
scaling algorithm [3] that can achieve O((min {

√
U, n}n2 + U logU) log nN),

where N is the magnitude of the largest supply or demand of any node. Major
breakthroughs in improving the efficiency of min-cost flow algorithms generally
correspond to direct improvements to these algorithms. Orlin’s algorithm [5]
solves uncapacitated min-cost flow in O(n log n(n2 +n log n)) and is occasionally
used as a subroutine in algorithms for the transportation problem. Recently, Lee
and Sidford proposed a novel interior-point method for solving linear programs
that resulted in a Õ(n2.5) algorithm for min-cost flow [6].

2 Geometric Algorithms

In this section, I present a variety of algorithms for solving the geometric
transportation problem based on network flow. The algorithms I consider make
use of the geometric aspects of the problem to gain extra efficiency. I divide this
section into two parts; the first part is concerned with exact algorithms, and the
second part focuses on approximation algorithms.

2.1 Exact Geometric Algorithms

The first exact algorithm I consider extends a fast geometric algorithm for
weighted bipartite matching from Vaidya [7] to the transportation setting. The
assumptions in [8] about the setting are that A,B ⊂ R2 and the row and column
sums rb, ca of any valid transportation matrix are nonnegative integers. The
main contribution of this paper is that, when the ground distance is the l1, l2, or
l∞ norm, the algorithm runs in O(n2.5 log n logN).

The algorithm presented in [8] uses the dual of the linear program formulation
from Eq. 1. A primal-dual algorithm for the transportation problem associates a
dual variable with each node and a nonnegative slack value with each edge [3, 8].
Typically, primal-dual algorithms use a scaling of supplies and demands. At each
scale, a max-flow subproblem is solved that requires finding O(n) augmenting
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paths. Next, I summarize how [8] uses data structures from computational
geometry to find each augmenting path in O(n1.5 log n) time, instead of the
naive O(n3) run time.

Without going into much detail on the algorithm for finding a max-flow in the
primal-dual method, I highlight that it involves identifying a set of admissible
edges used to define a residual graph. The admissible edges are edges that satisfy
certain constraints, which are defined as functions of the dual variables and the
ground distance. Augmenting paths in this residual graph are used to find a
max-flow. Naively, this can be accomplished in O(n2A) time, where A is the
final flow amount—A is typically ≥ n.

In each max-flow subproblem, the quantity

δ = min
a∈A,b∈B

{d(a, b)− αa − βb}, (2)

is used to identify admissible edges, where αa is the dual variable associated
with node a and βb is the dual variable associated with node b. When the ground
distance is the l2 norm, they suggest to use a weighted Voronoi diagram (WVD)
[9], and when the distance is the l1 or l∞, a range tree (RT) can be used. These
data structures allow for δ to be found without having to check all edge costs.
Simply, a WVD is a Voronoi diagram with a weight associated with each point
in the plane. If all of the weights are equal, the resulting WVD is equivalent to
the standard Voronoi diagram. The WVD can be used to compute Eq. 2 as
follows. Note that for a set of points Q, the WVD divides the plane into |Q|
regions. The Voronoi cells are

Vor(q) = {x ∈ R2 : nearest[x,Q] = q},

where I define nearest[z,Q], z ∈ R2 as the point q∗ such that

d(z, q∗)− w(q∗) = min
q∈Q
{d(z, q)− w(q)}.

Then I can solve Eq. 2 by answering nearest queries for points a ∈ A, e.g.,
nearest[a,B]. The WVD can be constructed in O(|Q| log |Q|) time, and prepro-
cessed in O(|Q| log |Q|) additional time to answer individual nearest queries in
O(log |Q′|) time, where Q′ is the size of the point set being queried, e.g., |B|.

The WVD can be modified for use with the l1 norm as the ground distance,
but the authors suggest the use of a RT as a simpler alternative. The RT
partitions a point set Q into O(log |Q|) intervals along the x-axis. The subset of
points contained within each interval L = [x1, x2] is QL = {q ∈ Q : qx ∈ L}. For
each such q ∈ QL, nearest[(x1, qy), QL] and nearest[(x2, qy), QL] are stored,
where qy is the y-coordinate of q projected onto the right-hand vertical line
bounding the current interval. Define

Q(qy,∞) := {q′ ∈ Q : q
′

y ≥ qy}

and
Q(−∞, qy) := {q′ ∈ Q : q

′

y ≤ qy}.
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Figure 1: One split of the point set Q over which the range tree is defined
recursively.

Since the distance is the l1 norm, nearest[z,QL] of a point z not in QL is an-
swered by the closer of nearest[(m, qy), Q(qy,∞)] and nearest[(m, q

′

y), Q(−∞, q′

y)],
where m is the x-coordinate of either boundary of L such that z lies on the
opposite side of the points in L, and qy, q

′

y are the y-coordinates of the two

closest points to z such that qy ≥ z ≥ q
′

y (see Figure 1). Hence, the nearest

query can be answered by traversing only O(log |Q|) nodes of a tree, each level
of which represents one of the partitions. It can be constructed in O(|Q| log |Q|)
time, and queries can be answered in O(log |Q|) time. The extension to the l∞
metric follows by rotating the plane of reference through 45◦; each l1 distance is
a multiple of the l∞ distance in the original coordinate system [8]

Given these data structures for finding admissible edges in the residual graph
of the max-flow subproblems, [8] proceeds to derive an algorithm that achieves
the desired O(n2.5 log n logN) time bound for finding the optimal transportation.
Varadarajan [10] shows that the approach of [7] for geometric bipartite matching,
which was used by [8] for the O(n2.5 log n logN) algorithm just described, can
be improved by nearly a factor of n using geometric divide-and-conquer. They
achieve a O(n1.5 log5 n) time bound for min-cost perfect matching in the plane. A
key component of their method involves finding a subset of Õ(n) candidate edges
at each phase of the primal-dual method, generated with the semi-separated
decomposition, a relaxation of the well-separated pairwise decomposition (WSPD)
[11]. Agarwal et. al. [12] improved the data structures of [7] for general Lp
norms using the concept of vertical decompositions of arrangements, which
requires O(nε), ε > 0, update time to maintain a set of closest pairs of weighted
points, but only incurs O(log n) query time. Recently, [13] extended this result
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by considering ”vertical” shallow cuttings and introducing a dynamic planar
Voronoi diagram that has polylogarithmic update time.

A recent paper from Agarwal et. al. [14] claim that they have derived a
strongly polynomial algorithm for the planar transportation problem that runs
in O(n2polylogn) time, but details on the algorithm are missing from the paper,
perhaps to be included in the journal version (which is not yet available). Finally,
I point out that the state-of-the-art min-cost flow algorithm by Lee and Sidford
[6] that was mentioned earlier in §1 implies that in the general setting, i.e. supply
and demand is integral and total demand is U , an optimal transportation can
be found in Õ(n2.5).

2.2 Approximate Geometric Algorithms

In certain applications, it may be acceptable to trade off accuracy of the optimal
transportation cost for speed. One immediate potential use case is for dynamically
computing transportation plans for logistics companies with global business
operations. Due to the scale of their transactions, it is likely that (1 + ε)-
approximate near-linear time algorithms are valuable tools for efficient and rapid
decision-making. In certain situations, it is only necessary to approximately
compute the transportation distance. Fast (1 + ε) approximation algorithms for
this task can achieve near-linear time bounds [15, 16, 17].

We attempt to restrict our focus to approximation algorithms for the geo-
metric transportation problem; for a recent survey on approximation algorithms
for geometric matching, see §4 of [4].

The first (1 + ε) approximation algorithm for the geometric transporta-
tion problem found in the literature is from Sharathkumar and Agarwal [18].
For the standard geometric setting and any ground distance, they propose a
O((n

√
U log2 n+U logU)Φ(n) log(U/ε)) ε-approximation algorithm. Here, Φ(n)

is the query and update time of a dynamic weighted nearest neighbor data
structure under the provided ground distance. Basically, this algorithm modifies
the multi-scale Gabow-Tarjan transportation algorithm [3] (recall, it computes
an optimal transportation in O((min {

√
U, n}n2 + U logU) log nN)); similar to

Gabow-Tarjan and the algorithms from the previous section, they solve the dual
of the LP. Any dynamic weighted nearest neighbor data structure with update
and query time Φ(n) can be employed to efficiently compute a value defined
similarly to δ from Eq. 2. The approximation parameter ε is used to control
the number of iterations (note that after each iteration, a feasible solution is
established); the algorithm is allowed to terminate once it has achieved the
appropriate level of ε-closeness to the optimal assignment.

Next, I describe two algorithms from a recent paper by Agarwal et. al.
[14]. The first is a randomized ε-approximation algorithm that finds the optimal
transportation in O(n1+ε) expected time whose expected cost is O(log(1/ε))µ(τ∗)
if the spread of A ∪ B is bounded by some polynomial. This algorithm uses
randomly-shifted grids to recursively decompose the problem into a set of easier
subproblems that are solved by Orlin’s algorithm [5]. The process of creating
and solving the subproblems introduces an amount error into the solution that
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Figure 2: (Left) The point set is clustered using a compressed quadtree. (Right)
The compressed quadtree is split into two trees T ↑ and T ↓. Pairwise distances−→
E between the nodes of the two quadtrees are approximated with a WSPD.
Figure reproduced from [14].

they bound to achieve the aforementioned expected approximate cost. For an
efficient implementation in the planar case, the authors suggest using 2D dynamic
orthogonal range searching data structures to store the two point sets. The
randomly-shifted grid is representable with a quadtree.

The second algorithm described in [14] is a (1 + ε) approximation algorithm
that finds a transportation plan with cost (1 + ε)µ(τ∗) in time
O(n1.5ε−d polylog(U) polylog(n)). The algorithm constructs an efficient repre-
sentation of the pairwise distances between the point sets, and then makes use
of Lee and Sidford’s min-cost flow algorithm on the resulting flow graph. The
efficient pairwise distance representation is constructed by forming a hierarchical
clustering of A ∪B with a compressed quadtree, with the input points as leaves.
Two copies of the quadtree are made, called the up-tree and down-tree. Edges
are added between the up-tree and down-tree by constructing a WSPD [11] over
the two hierarchical representations of the point set (Figure 2). The WSPD
forms a directed acyclic graph with a number of edges of size linear in the
number of input points. The distance between any two points in the input is
approximated by a unique path through the WSPD. Using Lee and Sidford’s
algorithm, a min-cost flow is then computed over the graph formed by the
up-tree, down-tree, and the WSPD; the approximate transportation map can be
recovered from this in linear time. In the planar case, this incurs a run time of
O(n1.5ε−2 polylog(U) polylog(n)).

3 Entropic Regularization

The exact algorithms I described in the previous section become inefficient when
n gets large (e.g., millions or billions of data points) or the dimension of the
ambient space is large. In future study, it will be interesting to benchmark
the approximate algorithms on large-scale problems of interest to the machine
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learning and computer vision/graphics communities. In this section, I describe a
significant result made in the machine learning community by Cuturi [19] for
tackling large-scale discrete transportation problems.

The key insight is that the LP from Eq. 1 can be smoothed, enabling the use
of the famous Sinkhorn matrix scaling algorithm [20]. I can rewrite the objective
in Eq. 1 with matrix notation as

C(P ) = min
P∈B(r,c)

〈
P,D

〉
, (3)

where P is the n × n transportation matrix, D is the n × n positive semi-
definite distance matrix,

〈
·, ·
〉

is the Frobenius inner product, and B(r, c) is the
transportation polytope of r and c. The transportation polytope is the set of all
real, positive n× n matrices whose rows sum to r and whose columns sum to
c. Note that I am making a simple assumption that all rows and columns sum
to the same integral value. In [19], they adapt a probabilistic interpretation of
B(r, c) as a joint probability table for two multinomial random variables X and
Y taking values in [1, n] with distribution r and c, respectively.

The key insight is to restrict the search over transport plans in Eq. 3 to the
set of transportation matrices that satisfy an entropic constraint; i.e., the joint
probability table P ∈ B(r, c) satisfies an inequality in terms of the Kullback-
Leibler information divergence (KL-divergence) between P and the marginals X
and Y . In [19], they show that if the constraint on the KL-divergence is large
enough, then the transportation distance found by solving the smoothed version
of Eq. 3 is equivalent to the original transportation distance. Furthermore, the
smoothed version, provided below,

Pλ = arg min
P∈B(r,c)

〈
P,M

〉
− 1

λ
h(P ) (4)

can be solved with a fast, linear-time algorithm first introduced by Sinkhorn
[20]. Above, λ is a Lagrange multiplier for the entropic constraint h(P ). This
entropic regularization term enforces a simple structure on the regularized
transport Pλ, which is what allows the use of Sinkhorn’s iterative matrix scaling
algorithm. Theoretically, as λ → ∞, convergence to the optimal transport is
guaranteed. However, in practice one must decide on a λmax at which the
algorithm must terminate, as the limitations of representing numbers with
floating point in memory will be reached. More details on this topic can be
found in [21].

4 Conclusion

In this section, I highlight a few research directions before concluding. It was
previously mentioned that the geometric approximation algorithms discussed
in §2.2 could be benchmarked on the big data and high-dimensional problems
common in certain applied areas. Most likely, the amount of error that can
be tolerated in the solution will vary depending on the problem. Another
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research problem to consider is a streaming version of one of the network flow
algorithms that can update a planar transportation plan when a small number
of points are removed from the point set and a small number of points are
simultaneously added at each time step. This application often arises in practice,
e.g., in data association for multi-object tracking, or when considering adding
and removing factories and warehouses over time. One would hope to be able
to achieve a subquadratic time bound in the number of input points after the
update, or perhaps quadratic only in the number of added and removed points.
Observe, however, that there are some subtleties that make this challenging; it
is easy to contrive of a planar point set A ∪B such that inserting a new point
a′ ∈ A would drastically change the minimum weight matching solution. This
suggests that the worst case time bound could be a function of all of the input
points. Consequentially, the approximation algorithm from [14], where they
use a hierarchical clustering of the point set, seems appropriate. It should be
fairly robust to small perturbations since it already approximates the pairwise
distances by clustering nearby points.
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