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Figure 1: Upper and lower semi-continuity (source: https://en.wikipedia.org/wiki/

Semi-continuity

1 Appendix A - Mathematical Background

Definitions, propositions, and theorems useful for understanding the material presented in these
notes. Presented here are specifically the concepts from Appendix A I was unfamiliar with.

Definition A.2. We say that a vector x ∈ Rn is a limit point of a subsequence {xk} in Rn if there
exists a subsequence of {xk} that converges to x.

Definition A.4. Let X be a subset of Rn.

(a) A real-valued function f : X → R is called upper semicontinuous (respectively, lower semicon-
tinuous) at a vector x ∈ X if f(x) ≥ lim supk→∞ f(xk) [respectively, f(x) ≤ lim infk→∞ f(xk)]
for every sequence {xk} ⊂ X that converges to x. (See Figure 1).

(b) A function f : X → R is called coercive if for every sequence {xk} ⊂ X such that ‖xk‖ → ∞,
we have limk→∞ f(xk) =∞.

Proposition A.23 (Second Order Expansion). Let f : Rn → R be twice continuously differen-
tiable over an open sphere S centered at a vector x.

(a) For all y such that x+ y ∈ S,

f(x+ y) = f(x) + y′∇f(x) +
1

2
y′
(∫ 1

0

( ∫ t

0
∇2f(x+ τy)dτ

)
dt

)
y.
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(b) For all y such that x+ y ∈ S, there exists an α ∈ [0, 1] such that

f(x+ y) = f(x) + y′∇f(x) +
1

2
y′∇2f(x+ αy)y.

(c) For all y such that x+ y ∈ S there holds,

f(x+ y) = f(x) + y′∇f(x) +
1

2
y′∇2f(x)y + o(‖y‖2).

Proposition A.24 (Descent Lemma). Let f : Rn → R be continuously differentiable, and let x
and y be two vectors in Rn. Suppose that

‖∇f(x+ ty)−∇f(x)‖ ≤ Lt‖y‖, ∀t ∈ [0, 1],

where L is some scalar. Then

f(x+ y) ≤ f(x) + y′∇f(x) +
L

2
‖y‖2.

2 Appendix B - Convex Analysis

These results are presented without proof; most are actually omitted from the book anyways since
the author refers the reader to his book on Convex Optimization.

2.1 Appendix B.1 - Convex Sets and Functions, 1/16/17

Some definitions and properties of convex sets and functions

A subset C of Rn is called convex if

αx+ (1− α)y ∈ C, ∀x, y ∈ C, ∀α ∈ [0, 1].

Some important properties of convex sets, presented without proof:

(a) For any collection {Ci | i ∈ I} of convex sets, the set intersection ∩i∈ICi is convex.

(b) The vector sum of two convex sets is convex.

(c) The image of a convex set under a linear transformation is convex.

(d) If C is a convex set and f : C → R is a convex function, the level sets {x ∈ C | f(x) ≤ α} and
{x ∈ C | f(x) < α} are convex for all scalars α.

A function f : C → R is called convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C, ∀α ∈ [0, 1].

The function f is concave if −f is convex. The function f is called strictly convex if the above
inequality is strict for all x, y ∈ C with x 6= y, and all α ∈ (0, 1)
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A special case of Jensen’s Inequality gives us the following

f

( m∑
i=1

αixi

)
≤

m∑
i=1

αif(xi)

for x1, ..., xm ∈ C, α1, ..., αm ≥ 0, and
∑m

i=1 αi = 1.

The following provides means for recognizing convex functions

(a) A linear function is convex.

(b) Any vector norm is convex.

(c) The weighted sum of convex functions, with positive wieghts, is convex.

Characterizations of Differentiable Convex Functions

(a) f is convex over C if and only if

f(z) ≥ f(x) + (z − x)′∇f(x) ∀x, z ∈ C

Note that one can easily picture this for the simple case of the quadratic function.

(b) f is strictly convex over C if and only if the above inequality is strict whenever x 6= z

(c) if ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex over C.

(d) if ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.

(e) f is strongly convex if for some σ > 0, we have

f(y) ≥ f(x) +∇f(x)′(y − x) +
σ

2
‖x− y‖2

(f) If f : Rn → R is continuously differentiable and strongly convex in that there is some σ
satisfying the inequality from above, then f is strictly convex. If in addition, ∇f satisfies the
Lipschitz condition

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn,

for some L > 0, then we have for all x, y ∈ Rn

(∇f(x)−∇f(y))′(x− y) ≥ σL

σ + L
‖x− y‖2 +

1

σ + L
‖∇f(x)−∇f(y)‖2.

(g) If f is twice continuously differentiable over Rn, then f satisfies (e) if and only if the matrix
∇2f(x)− σI, where I is the identity, is positive semidefinite for every x ∈ Rn
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2.2 Appendix B.1 - Convex Sets and Functions, 1/18/17

Convex and Affine Hulls

Let X be a subset of Rn. A convex combination of elements of X is a vector of the form
∑m

i=1 αixi,
where x1, ..., xm belong to X and α1, ..., αm are scalars such that

αi ≥ 0, i = 1, ...,m,
m∑
i=1

αi = 1.

The convex hull of X is the set of all convex combinations of elements of X. In particular, if X
consists of a finite number of vectors x1, ..., xm, its convex hull is

conv(X) =

{ m∑
i=1

αixi |αi ≥ 0, i = 1, ...,m,
m∑
i=1

αi = 1

}
The affine hull of a subspace S is the set of all affine combinations of elements of S,

aff(S) =

{ m∑
i=1

αixi | xi ∈ S,
m∑
i=1

αi = 1

}
.

A set in a vector space is affine if it contains all of the lines generated by its points. The affine hull
is also the intersection of all linear manifolds containing S, where linear manifolds are translations
of a vector subspace. Note that aff(S) is itself a linear manifold and it contains conv(S).

Topological Properties of Convex Sets

Let C be a convex subset of Rn. We say that x is a relative interior point of C if x ∈ C and there
exists a neighborhood N of x such that N∩ aff(C) ⊂ C, i.e., if x is an interior point of C relative
to aff(C). The relative interior of C is the set of all relative interior points of C.

If f : Rn → R is convex, then it is continuous. More generally, if C ⊂ Rn is convex and f : C → R
is convex, then f is continuous in the relative interior of C. Note that every function that is finite
and convex on an open interval is continuous on that interval. The proof for this uses the fact that
the left-hand and right-hand derivatives can be shown to exist at every point in the open interval.
Alternatively, one can use the fact that ∇f satisfies the Lipschitz condition.

The set of minimizing points of a convex function f : Rn → R over a closed convex set X is
nonempty and compact if and only if all its level sets,

La = {x ∈ X | f(x) ≤ a}, a ∈ R,

are compact.

2.3 Appendix B.2 - Hyperplanes, 1/20/17

A hyperplane in Rn is a set H = {x | a′x = b}, where a is a nonzero vector in Rn and b is a scalar.
Note that hyperplanes are convex sets. The hyperplane can also be described as an affine set that
is parallel to the subspace {x | a′x = 0}. This is because one can describe a hyperplane also as
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H = x̄+ {x | a′x = 0}

for x̄ ∈ H, or

H = {x | a′x = a′x̄}.

Theorem 1 (Supporting Hyperplane). If C ⊂ Rn is a convex set and x̄ is a point that does not
belong to the interior of C, there exists a vector a 6= 0 such that

a′x ≥ a′x̄, ∀x ∈ C.

In fact, one can think of x̄ as being on the boundary of C. In general, a supporting hyperplane
of a convex set C is one that entirely contains C in one of the two closed half-spaces bounded by
the hyperplane. Also, C has at least one boundary-point on the hyperplane, and perhaps multiple
supporting hyperplanes at a single boundary point.

Theorem 2 (Separating Hyperplane). If C1 and C2 are two nonempty and disjoint convex subsets
of Rn, there exists a hyperplane that separates them, i.e., a vector a 6= 0 such that

a′x1 ≤ a′x2, x1 ∈ C1, x2 ∈ C2.

Theorem 3 (Strict Separation Theorem). If C1 and C2 are two nonempty and disjoint convex sets
such that C1 is closed and C2 is compact, there exists a hyperplane that strictly separates them,
i.e., a vector a 6= 0 and a scalar b such that

a′x1 < b < a′x2, x1 ∈ C1, x2 ∈ C2.

We can thus characterize a convex set as the intersection of the halfspaces that contain it.

Theorem 4 (Proper Separation). (a) Let C1 and C2 be two nonempty convex subsets of Rn.
There exists a hyperplane that separates C1 and C2, and does not contain both C1 and C2 if
and only if

ri(C1) ∩ ri(C2) = ∅.

(b) Let C and P be two nonempty convex subsets of Rn such that P is the intersection of a finite
number of closed halfspaces. There exists a hyperplane that separates C and P , and does not
contain C if and only if

ri(C) ∩ P = ∅.

See http://www.unc.edu/~normanp/890part4.pdf and http://people.hss.caltech.edu/~kcb/

Notes/SeparatingHyperplane.pdf for proofs of various theorems and properties mentioned above.
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Figure 2: Farkas’ Lemma (source: http://www.sfu.ca/~mdevos/notes/misc/LP.pdf

2.4 Appendix B.3 - Cones and Polyhedral Convexity, 1/23/17

A subset C of a vector space V is a cone (sometimes called linear cone) if for each x ∈ C and
positive scalars α, the product αx is in C. A cone C is a convex cone if αx+ βy belongs to C,
for positive scalars α, β, and x, y ∈ C. The polar cone of C is given by

C⊥ = {y | y′x ≤ 0, ∀x ∈ C}.

The polar cone of a subspace is the orthogonal complement, i.e., C⊥ = −C∗.
A finitely generated cone has the form

C =

{
x | x =

r∑
j=1

µjaj , µj ≥ 0, j = 1, ..., r

}
,

where a1, ..., ar are some vectors. A cone C is polyhedral if it has the form

C = {x | a′jx ≤ 0, j = 1, ..., r},

where a1, ..., ar are some vectors. Note that all of these cones are convex.

Theorem 5 (Polar Cone Theorem). For any nonempty closed convex cone C, we have (C⊥)⊥ = C.

(Farkas’ Lemma) Let x, e1, ..., em, and a1, ..., ar be vectors of Rn. We have x′y ≤ 0 for all vectors
y ∈ Rn (i.e., x is in a polar cone), such that

y′ei = 0, ∀i = 1, ...,m y′aj ≤ 0, ∀j = 1, ..., r,

if and only if x can be expressed as

x =

m∑
i=1

λiei +

r∑
j=1

µjaj ,

7
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where λi and µj are some scalars with µj ≥ 0 for all j. This is a result stating that a vector is
either in a given convex cone or that there exists a hyperplane separating the vector from the cone-
there are no other possibilities.

A subset of Rn is a polyhedral set if it is nonempty and it is the intersection of a finite number of
closed halfspaces, i.e., if it is of the form

P = {x | a′jx ≤ bj , j = 1, ..., r},

where aj are some vectors and bj are some scalars. A set P is polyhedral if and only if it is the
sum of a finitely generated cone and the convex hull of a finite set of points.

2.5 Appendix B.4 - Extreme Points and LP, 1/25/17

A vector x is said to be an extreme point of a convex set C if x belongs to C and there do not exist
vectors y, z ∈ C, and a scalar α ∈ (0, 1) such that

y 6= x, z 6= x, x = αy + (1− α)z,

Thinking about this, every point on a circle in R2 is an extreme point of the convex set consisting
of these points.

Some important facts about extreme points:

1. if H is a hyperplane that passes through a boundary point of C and contains C in one of its
halfspaces, then every extreme point of C ∩H is also an extreme point of C.

2. C has at least one extreme point if and only if it does not contain a line, i.e., a set L of the
form L = {x+ αd |α ∈ R} with d 6= 0.

3. Let C be a closed convex subset of Rn, and let C∗ be the set of minima of a concave function
f : C → R over C. Then if C is closed and contains at least one extreme point, and C∗ is
nonempty, then C∗ contains some extreme point of C.

Proposition B.19. Let C be a closed convex set and let f : C → R be a concave function. Assume
that for some invertible n× n matrix A and some b ∈ Rn we have

Ax ≥ b, ∀x ∈ C.

Then if f attains a minimum over C, it attains a minimum at some extreme point of C.

Now, important facts concerning polyhedral sets.

Let P be a polyhedral set in Rn.

1. If P has the form
P = {x | a′

jx ≤ bj , j = 1, ..., r},

then a vector v ∈ P is an extreme point of P if and only if the set

Av =
{
aj | a

′
jv = bj , j ∈ {1, ..., r}

}
,

contains n linearly independent vectors.
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2. If P has the form
P = {x |Ax = b, x ≥ 0},

where A is a given m × n matrix and b is a given vector, then a vector v ∈ P is an extreme
point of P if and only if the columns of A corresponding to the nonzero coordinates of v are
linearly independent.

3. (Fundamental Theorem of Linear Programming) Assume that P has at least one extreme
point. Then if a linear function attains a minimum over P , it attains a minimum at some
extreme point of P .

Proof. For (3): Since P is polyhedral, it has a representation

P = {x |Ax ≥ b},

for some m × n matrixc A and some b ∈ Rn. If A had rank less than n, then its nullspace would
contain some nonzero vector x̄, so P would contain a line parallel to x̄, contradicting the existence
of an extreme point. Thus A has rank n and hence it must contain n linearly independent rows
that constitute an n × n invertible submatrix Â. If b̂ is the corresponding subvector of b, we see
that every x ∈ P satisfies Âx ≥ b̂. The result then follows by B.19.

2.6 Appendix B.5 - Differentiability Issues, 1/27/17

Given a convex function f : Rn → R, we say that a vector d ∈ Rn is a subgradient of f at a point
x ∈ Rn if

f(z) ≥ f(x) + (z − x)′d,

The set of all subgradients of a convex function is called the subdifferential of f at x, and is denoted
by ∂f(x).

A vector x∗ ∈ X minimizes f over a convex set X ⊂ Rn if and only if there exists a subgradient
d ∈ ∂f(x∗) such that

d′(z − x∗) ≥ 0, ∀z ∈ X.

For the special case where X = Rn, we obtain a basic necessary and sufficient condition for uncon-
strained optimality of x∗, namely 0 ∈ ∂f(x∗).

3 Chapter 1 - Unconstrained Optimization: Basic Methods

3.1 Chapter 1.1 - Optimality Conditions, 1/30/17

Proposition 1.1.1 (Necessary Optimality Conditions). Let x∗ be an unconstrained local min-
imum of f : Rn → R, and assume that f is continuously differentiable in an open set S containing
x∗. Then

∇f(x∗) = 0.

If in addition f is twice continuously differentiable within S, then

∇2f(x∗) : positive semidefinite.
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Proof. Fix some arbitrary d ∈ Rn. Then, using the chain rule to differentiate the function g(α) =
f(x∗ + αd) of the scalar α, we have

0 ≤ lim
α↓0

f(x∗ + αd)− f(x∗)

α
=
dg(0)

dα
= d′∇f(x∗),

where the inequality follows because we assume that x∗ is a local minimum. Since d is arbitrary,
we can replace it with −d and the inequality still holds. Therefore, d′∇f(x∗) = 0 for all d ∈ Rn,
which shows that ∇f(x∗) = 0.

Assume that f is twice continuously differentiable, and let d be any vector in Rn. For all α ∈ R,
the second order expansion yields

f(x∗ + αd)− f(x∗) = α∇f(x∗)′d+
α2

2
d′∇2f(x∗)d+ o(α2).

Using the condition ∇f(x∗) = 0 and the local optimality of x∗, we see that there is a sufficiently
small ε > 0 such that for all α with α ∈ (0, ε),

0 ≤ f(x∗ + αd)− f(x∗)

α2
=

1

2
d′∇2f(x∗)d+

o(α2)

α2
.

Taking the limit as α → 0 and using limα→0 o(α
2)/α2 = 0, we obtain d′∇2f(x∗)d ≥ 0, showing

that ∇2f(x∗) is positive semidefinite.

For the convex case where both f and the constraint set X are convex;

Proposition 1.1.2. If X is a convex subset of Rn and f : Rn → R is convex over X, then a local
minimum of f over X is also a global minimum. If in addition f is strictly convex over X, then f
has at most one global minimum over X. Moreover, if f is strongly convex and X is closed, then
f has a unique global minimum over X.

The proof consists of simple applications of the convexity definitions from Appendix B.

Proposition 1.1.3 (Necessary and Sufficient Conditions for Convex Case). Let X be a
convex set and let f : Rn → R be a convex function over X.

(a) If f is continuously differentiable, then

∇f(x∗)′(x− x∗) ≥ 0, ∀x ∈ X,

is a necessary and sufficient condition for a vector x∗ ∈ X to be a global minimum of f over
X.

(b) If X is open and f is continuously differentiable over X, then ∇f(x∗) = 0 is a necessary and
sufficient condition for a vector x∗ ∈ X to be a global minimum of f over X.

Proposition 1.1.5 (Second Order Sufficient Optimality Conditions). Let f : Rn → R be
twice continuously differentiable over an open set S. Suppose that a vector x∗ ∈ S satisfies the
conditions

∇f(x∗) = 0, ∇2f(x∗) : positive definite.

Then, x∗ is a strict unconstrained local minimum of f . In particular, there exist scalars γ > 0 and
ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖2, ∀x with ‖x− x∗‖ < ε.

10



3.2 Chapter 1.2 - Gradient Methods - Convergence, 2/7/17

Gradient Methods

Most of the interesting algorithms for unconstrained minimization of a continuously differentiable
function are iterative descent methods. Given a vector x ∈ Rn with ∇f(x) 6= 0, consider the half
line of vectors

xa = x− α∇f(x), ∀α ≥ 0.

More generally, consider the half line of vectors

xa = x+ αd, ∀α ≥ 0,

where the direction vector d ∈ Rn makes an angle with ∇f(x) that is greater than 90 degrees, i.e.,

∇f(x)′d < 0.

We have f(xa) = f(x) +α∇f(x)′d+ o(α) from the first order expansion about x. For α near zero,
the term α∇f(x)′d dominates o(α) and as a result, for positive but sufficiently small α, f(x+ αd)
is smaller than f(x). This forms the basis for a broad class of iterative algorithms;

xk+1 = xk + αkdk, k = 0, 1, ...,

with proper choice of direction dk. This algorithm is known as the gradient method when
dk = −∇f(xk).

Selecting the Descent Direction

Many gradient methods are specified in the form

xk+1 = xk − αkDk∇f(xk),

where Dk is a positive definite symmetric matrix. Since dk = −Dk∇f(xk), the descent condition
∇f(xk)′dk < 0 is written as

∇f(xk)′Dk∇f(xk) > 0,

and holds thanks to the positive definiteness of Dk.

For the steepest descent algorithm,

Dk = I, k = 0, 1, ...

The name is derived from the property of the (normalized) negative gradient direction

dk = − ∇f(xk)

‖∇f(xk)‖
.

Among all directions d ∈ Rn that are normalized so that ‖d‖ = 1, it is the one that minimizes the
slope ∇f(xk)′d of the cost f(xk + αd) along the direction d at α = 0. By the Schwartz inequality,

∇f(xk)′d ≥ −‖∇f(xk)‖ · ‖d‖ = −‖∇f(xk)‖,

11



and equality is obtained with the aforementioned negative gradient direction for dk.

Newton’s Method involves selecting

Dk = (∇2f(xk))−1, k = 0, 1, ...,

provided ∇2f(xk) is positive definite. Taking the quadratic approximation of f around the current
point and setting the first derivative to 0 produces the desired gradient direction. Therefore, in
general, the Newton iteration is

xk+1 = xk − αk(∇2f(xk))−1∇f(xk).

Note that Newton’s method finds the global minimum of a positive definite quadratic function in
a single iteration (assuming αk = 1).

Diagonally Scaled Steepest Descent sets Dk to be an n×n diagonal matrix where the diagonal entries
are positive scalars to ensure positive definiteness. A popular choice is to choose the diagonal entries
so that Dk approximates the inverted second partial derivative of f w.r.t. to xi.

Other choices include computing the Hessian at the first iteration and only recomputing every p > 1
iterations (or never), as well as using a finite-difference approximation to the Hessian.

The Gauss Newton Method applies to the problem of minimizing the sum of squares of real-valued
functions g1, g2, ..., gm,

minimize f(x) =
1

2
‖g(x)‖2 =

1

2

m∑
i=1

(gi(x))2

subject to x ∈ Rn.

We choose
Dk = (∇g(xk)∇g(xk)′)−1, k = 0, 1, ...

∇g(xk)∇g(xk)′ is positive definite and hence invertible if and only if the matrix ∇g(xk) has rank
n. The Gauss-Newton method takes the form

xk+1 = xk − αk(∇g(xk)∇g(xk)′)−1∇g(xk)g(xk).

Stepsize Selection

The Minimization Rule chooses αk such that the cost function is minimized along the direction dk,
i.e., αk satisfies

f(xk + αkdk) = min
α≥0

f(xk + αdk).

The Limited Minimization Rule simply uses a fixed scalar s and chooses αk that yields the greatest
cost reduction over all stepsizes in the interval [0, s], i.e.,

f(xk + αkdk) = min
α∈[0,s]

f(xk + αdk).

These can be implemented using one-dimensional line search algorithms. In practice, the line search
is stopped once a stepsize αk satisfies some termination criterion since the minimum cannot always
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be computed exactly. These methods trade off more function and/or gradient evaluations for fewer
required iterations, because of the greater cost reduction per iteration they achieve.

Since line minimization can sometimes incur considerable additional computation, there are al-
ternatives based on successive stepsize reduction. For example, the simplest rule initially selects
a stepsize, and if the corresponding vector xk + sdk does not yield an improved value of f , the
stepsize is reduced by a certain factor until the value of f is improved. This often works in practice
but is theoretically unsound, because the cost improvement obtained at each iteration may not be
substantial enough to guarantee convergence to a minimum.

The Armijo rule modifies the scheme described above by introducing scalars s, β, and σ with
0 < β < 1, and 0 < σ < 1. We set αk = βmks, where mk is the first nonnegative integer m for
which

f(xk)− f(xk − βmsdk) ≥ −σβms∇f(xk)′dk.

The stepsizes βms are tried succesively until the above inequality is satisfed. This ensures that the
cost improvement is sufficiently large. Usually, σ is chosen close to zero, e.g., σ ∈ [10−5, 10−1]. The
reduction factor β is chosen from 1/2 to 1/10 depending on the confidence we have on the initial
stepsize s. Many Newton-like methods incorporate some implicit scaling of the direction dk, which
makes s = 1 a good stepsize choice. See Figure 1.2.7 for a nice depiction of the Armijo rule in
action.

Choosing a constant step size is usually only successful when an appropriate value is known or can
be determined fairly easily. A diminishing stepsize such that αk → 0 does not guarantee descent at
each iteration, but descent becomes more likely as the stepsize diminishes. To ensure that progress
can be maintained even when far from a stationary point, we require that

∞∑
k=0

αk =∞.

Generally, this has good theoretical convergence properties but the associated convergence rate
tends to be slow. Hence, this is useful in situations where slow convergence is inevitable, e.g., in
singular problems or when the gradient is calculated with error.

Convergence Results

Gradient methods are guided downhill by local information about the f . The most we can expect
from a gradient method is that it converges to a stationary point. One way to encourage a gradient
descent method to not get stuck at nonstationary points is by prevent the descent direction from
asymptotically becoming orthogonal to the gradient direction. For e.g., if the eigenvalues of the
positive definite symmetric matrix Dk are bounded above and bounded away from zero. A more
general condition is as follows:

Consider the sequence {xk, dk} generated by a given gradient method. We say that the direction
sequence {dk} is gradient related to {xk} if the following property can be shown:

For any subsequence {xk}k∈K that converges to a nonstationary point, the corresponding subse-
quence {dk}k∈K is bounded and satisfies

lim
k→∞,

sup
k∈K
∇f(xk)′dk < 0.
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This is a “nonorthongality” type of condition, which is quite general. Roughly, this means that dk

does not become “too small” or “too large” relative to ∇f(xk), and that the angle between dk and
∇f(xk) does not get “too close” to 90 degrees. We care about this because we do not want our
gradient method to converge onto a nonstationary point; in fact, it follows that if a subsequence
{∇f(xk)} tends to a nonzero vector (i.e., a nonstationary point), the corresponding subsequence
of directions dk is bounded and does not tend to be orthogonal with the gradient.

Proposition 1.2.1 (Stationarity of Limit Points for Gradient Methods). Let {xk} be a
sequence generated by a gradient method xk+1 = xk + αkdk, and assume that {dk} is gradient
related and αk is chosen by the minimization rule, or the limited minimization rule, or the Armijo
rule. Then every limit point of {xk} is a stationary point.

Proof. Consider first the Armijo rule and let x̄ be a limit point of {xk}. Since {f(xk)} is mono-
tonically nonincreasing, {f(xk)} either converges to a finite value or diverges to −∞. Since f is
continuous, f(x̄) is a limit point of {f(xk)}, so it follows that the entire sequence {f(xk)} converges
to f(x̄), and

f(xk)− f(xk+1)→ 0. (1.17)

Moreover, by the definition of the Armijo rule, we have

f(xk)− f(xk+1) ≥ −σαk∇f(xk)′dk, (1.18)

so the right-hand side in the above relation tends to 0.
Let {xk}K be a subsequence converging to x̄, and assume to arrive at a contradiction that x̄ is
nonstationary (recall the definition of gradient related!). Since {dk} is gradient related, we have

lim
k→∞,

sup
k∈K
∇f(xk)′dk < 0,

and therefore from Eqs. (1.17) and (1.18),

{αk}K → 0.

Hence, by the definition of the Armijo rule, we must have for some index k̄ ≥ 0

f(xk)− f(xk + (αk/β)dk) < −σ(αk/β)∇f(xk)′dk, ∀k ∈ K, k ≥ k̄, (1.19)

i.e., the initial stepsize s will be reduced at least once ∀k ∈ K, k ≥ k̄. Since {dk} is gradient related,
{dk}K is bounded, so there exists a subsequence {dk}K̄ of {dk}K such that

{dk}K̄ → d̄,

where d̄ is some vector. From Eq. (1.19), we have

f(xk)− f(xk + ᾱkdk)

ᾱk
< −σ∇f(xk)′dk, ∀k ∈ K̄, k ≥ k̄, (1.20)

where ᾱk = (αk/β). By using the mean value theorem, this relation is written as

−∇f(xk + α̃kdk)′dk < −σ∇f(xk)′dk, ∀k ∈ K̄, k ≥ k̄,
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where α̃k is a scalar in the interval [0, ᾱk]. Taking limits in the above relation we obtain

−∇f(x̄)′d̄ ≤ −σ∇f(x̄)′d̄

or
0 ≤ (1− σ)∇f(x̄)′d̄.

Since σ < 1, it follows that
0 ≤ ∇f(x̄)′d̄, (1.21)

which contradicts the assumption that {dk} is gradient related. This proves the result for the
Armijo rule. For the minimization and limited minimization cases, it can easily be shown that the
line of argument just used establishes that any stepsize rule that gives a larger reduction in cost at
each iteration than the Armijo rule inherits the convergence properties of the latter.

Proposition 1.2.2 (Convergence of Constant Stepsize). Let {xk} be a sequence generated by
a gradient method xk+1 = xk + αkdk, where {dk} is gradient related. Assume that the Lipschitz
condition holds, and that for all k we have dk 6= 0 and

ε ≤ αk ≤ (2− ε)ᾱk, (1.24)

where

ᾱk =
|∇f(xk)′dk|
L‖dk‖2

,

and ε ∈ (0, 1] is a fixed scalar. Then every limit point of {xk} is a stationary point of f .

Proof. Using a slightly modified version of A.24, one can show that f(x) ≤ f(y) +∇f(x)′(x− y) +
L
2 ‖x− y‖

2. Plugging y = xk+1 and x = xk into this equation, we obtain

f(xk)− f(xk + αkdk) ≥ −αk∇f(xk)′dk − 1

2
(αk)2L‖dk‖2

= αk(‖∇f(xk)′dk‖ − 1

2
αkL‖dk‖2).

The rhs of Eq. (1.24) yields

|∇f(xk)′dk| − 1

2
αkL‖dk‖2 ≥ 1

2
ε|∇f(xk)′dk|.

Using this relation together with the condition αk ≥ ε in the inequality, the cost improvements at
iteration k is bounded:

f(xk)− f(xk + αkdk) ≥ 1

2
ε|∇f(xk)′dk|.

If a subsequence {xk}K converges to a nonstationary point, we must have that f(xk)−f(xk+1)→ 0,
and the preceding relation implies that |∇f(xk)′dk| → 0. This contradicts the assumption that {dk}
is gradient related. Hence, every limit point of {xk} is stationary.
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The idea here is that if the curvature of f is bounded by the Lipschitz condition, then one can
construct a quadratic function that overestimates f . An appropriate constant stepsize can then
be obtained within an interval around the scalar that minimizes this quadratic function along the
direction dk. In the case of steepest descent, the condition (1.24) becomes

ε ≤ αk ≤ 2− ε
L

.

Thus a constant stepsize roughly in the middle of the interval [0, 2/L] guarantees convergence.
Notice that f is not required to be convex.

The Lipschitz continuity condition also essentially guarantees convergence for a diminishing stepsize.

Proposition 1.2.2 (Convergence of Diminishing Stepsize). Let {xk} be a sequence generated
by a gradient method xk+1 = xk + αkdk. Assume that the Lipschitz condition holds, and that there
exist positive scalars c1, c2 such that for all k we have

c1‖∇f(xk)‖2 ≤ −∇f(xk)′dk, ‖dk‖2 ≤ c2‖∇f(xk)‖2.

Suppose also that

αk → 0,
∞∑
k=0

αk =∞.

Then either f(xk)→ −∞ or else {f(xk)} converges to a finite value and ∇f(xk)→ 0. Furthermore,
every limit point of {xk} is a stationary point of f .

The section concludes with the presentation and proof of the Capture Theorem. This essentially
states that local minima which are sufficiently “isolated” tend to attract gradient methods: once the
method gets close enough to such a minimum it remains close and converges to it. The conditions
f(xk+1) ≤ f(xk) and αk ≤ s under which this theorem holds are satisfied by the Armijo rule and
the limited minimization rule. They are also satisfied for a constant and a diminishing stepsize
under conditions that guarantee descent at each iteration. The condition ‖dk‖ ≤ c‖∇f(xk)‖ is
satisfied if dk = −Dk∇f(xk) with the eigenvalues of Dk bounded from above.

3.3 Chapter 1.3 - Gradient Methods - Rate of Convergence, 7/2/2017

The three main schools of thought for analysis of rates of convergence in nonlinear programming are
the computational complexity approach, the informational complexity approach, and local analysis.
The latter provides an accurate description of the behavior of a method near the optimal solution
by using series approximations. Even though the behavior at the beginning of a method is ignored
entirely, it is still the most useful and employed in this book the most.

For the minimization of any twice continuously differentiable function, a quadratic approximation
around the optimal solution is quite useful for asymptotic convergence analysis in the general case.
We first consider the convergence rate of steepest descent for quadratic functions. For a interactive
demonstration of the following, see http://distill.pub/2017/momentum/.

Consider a cost function f with positive definite Hessian Q. Thus,

f(x) =
1

2
x′Qx, ∇f(xk) = Qx, ∇2f(x) = Q.
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Figure 3: Illlustration of the convergence rate bound. The bound is minimized when α is such that
1− αm = αM − 1, i.e., for α = 2/(M +m)

The steepest descent method takes the form

xk+1 = xk − αk∇f(xk) = (I − αkQ)xk.

Squaring both sides and using the fact that, for min and max eigenvalues λ1, λn of A, λ1‖x‖2 ≤
x′Ax ≤ λn‖x‖2, we have

(xk)′(I − αkQ)2xk = ‖xk+1‖2 ≤ λ∗‖xk‖2,

where λ∗ is the max eigenvalue of (I − αkQ)2. Since the eigenvalues of (I − αkQ)2 are equal to
(1− αkλi)2, and λ∗ = max{(1− αkm)2, (1− αkM)2} where m is the smallest eigenvalue and M is
the largest, it follows that for xk 6= 0,

‖xk+1‖
‖xk‖

≤ max{|1− αkm|, |1− αkM |}.

From Figure 3, we can see that

α∗ =
2

M +m
.

Intuitively, the optimal stepsize causes the max and min eigenvalues to converge at the same rate.
The best convergence rate bound for steepest descent with constant stepsize is

‖xk+1‖
‖xk‖

≤ M −m
M +m

=
M/m− 1

M/m+ 1
.

The ratio M/m is the condition number of Q and determines the convergence rate for a given
problem. When the condition number is large, the problem is ill-conditioned and converges slowly.
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