Patrick Emami

Machine Learning Research Scientist
National Renewable Energy Lab
Patrick.Emami@nrel.gov
https://pemami4911.github.io

Research Statement

I am a machine learning research scientist at the National Renewable Energy Lab studying deep generative modeling, reinforcement learning, and AI for climate change. My research aims to develop and understand deep learning frameworks for tackling pressing clean-energy-related challenges. Broadly, I am curious about training agents capable of reasoning about the world like humans do.

Education

2016–2021	University of Florida, Gainesville, FL	Advisor: Dr. Sanjay Ranka
	Ph.D., Computer Science (Machine Learning)	
	Thesis: Neural algorithms for object-centric scene understanding	
2012–2016	University of Florida, Gainesville, FL	
	B.Sc., Computer Engineering	Cum Laude, GPA: 3.74/4.0

Research Experience

National Renewable Energy Lab, Research Scientist. May 2023–Present

• Artificial Intelligence, Learning, and Intelligent Systems (ALIS) group.

National Renewable Energy Lab, Postdoctoral Researcher. January 2022–May 2023

• Artificial Intelligence, Learning, and Intelligent Systems (ALIS) group.

National Renewable Energy Lab, Graduate Research Intern. May 2021–August 2021

• Complex Systems, Simulation, and Optimization Lab. Regional Mobility.

University of Florida, Department of Computer Science, Graduate Research Assistant. 2016–2021

- MALT Lab.
- *UF Transportation Institute.*

Selected Honors and Awards

2023	Outstanding Mentor at NREL (\$100)
2022	Top Reviewer at ICLR'22
2021	Top 10% Reviewer at ICML'21
2020	Student of the Year USDOT STRIDE Center (10 universities) (\$1,000)
2016–2021	McKnight Doctoral Fellowship (\$65,000)
2016–2021	CISE Department Graduate Research Fellowship (\$150,000)
2016	President's Honor Roll
2015–2016	Northrop Grumman Engineering Scholarship (\$1,000)
2014–2015	University Scholars Program Research Grant (\$1,750)
2014	IROS'14 Best Entertainment Robots and Systems Paper Finalist

Publications

Peer-Reviewed Conferences and Workshops

- [1] **Emami, P.**, Sahu, A., Graf, P. BuildingsBench: A Large-Scale Dataset of 900K Buildings and Benchmark for Short-Term Load Forecasting. NeurIPS'23 Datasets & Benchmarks. [Github].
- [2] Sigler, D., Biagioni, D., **Emami, P.**, Zamzam, AS., Knueven, B. Optimization of Distribution Feeder Topology: A Differential Programming Learning Approach. IEEE PESGM'23.
- [3] **Emami, P.**, Zhang, X., Biagioni, D., Zamzam, AS. Non-Stationary Policy Learning for Multi-Timescale Multi-Agent Reinforcement Learning. IEEE CDC'23.
- [4] **Emami, P.**, Perreault, A., Law, J., Biagioni, D., John, PCS. Plug & Play Directed Evolution of Proteins with Gradient-based Discrete MCMC. 36th Conference on Neural Information Processing Systems Workshop on Machine Learning in Structural Biology (NeurIPS'22 MLSB). 2022.
- [5] He, P., **Emami, P.**, Ranka, S., Rangarajan, A. Self-Supervised Robust Scene Flow Estimation via the Alignment of Probability Density Functions. AAAI'22. **15% acceptance rate**.
- [6] Emami, P., He, P., Ranka, S., Rangarajan, A. Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations. International Conference on Machine Learning (ICML'21). 2021. 21.5% acceptance rate.
- [7] **Emami, P.**, He, P., Rangarajan, A., Ranka, S. A Symmetric and Object-Centric World Model for Stochastic Environments. 34th Conference on Neural Information Processing Systems Workshop on Object Representations for Learning and Reasoning (NeurIPS '20). 2020. **Spotlight**.
- [8] **Emami, P.***, Vargas, L.*, Traynor, P. On the Detection of Disinformation Campaign Activity with Network Analysis. CCSW 2020: The ACM Cloud Computing Security Workshop. 2020. *Equal contribution
- [9] Emami, P., Pourmehrab, M., Martin-Gasulla, M., Ranka, S., Elefteriadou, L. A Comparison of Intelligent Signalized Intersection Controllers Under Mixed Traffic. IEEE Intelligent Transportation Systems Conference, 2018.
- [10] Omidvar, A., Pourmehrab, M., **Emami, P.**, Kiriazes, R., Esposito, J., Letter, C., Elefteriadou, L., Ranka, S., Crane, C. Deployment and Testing of Optimized Autonomous and Connected Vehicle Trajectories at a Closed-Course Signalized Intersection. Transportation Research Board's 97th, 2018.
- [11] **Emami, P.**, & Pourmehrab, M., & Elefteriadou, L., & Ranka, S., & Crane, C. A Demonstration of Fusing DSRC and Radar for Optimizing Intersection Performance. Automated Vehicles Symposium (AVS'17), 2017.
- [12] **Emami, P.**, Elefteriadou, L., Ranka, S. Tracking Vehicles Equipped with Dedicated Short-Range Communication at Traffic Intersections. 7th ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (DIVANet'17), 2017.
- [13] Hamlet, A., **Emami, P.**, Crane, C. The Cognitive Driving Framework: Joint Inference for Collision Prediction and Avoidance in Autonomous Vehicles. In the 15th International Conference on Control, Automation and Systems (ICCAS), pp. 1714-1719. IEEE, 2015.
- [14] Hamlet, A., Emami, P., Crane, C. A Gesture Recognition System for Mobile Robots That Learns Online. In the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'14), pp. 2114-2119. IEEE, 2014.

Peer-Reviewed Journals

[1] **Emami, P.**, He, P., Ranka, S., Rangarajan, A. Towards Improving the Generation Quality of Autoregressive Slot VAEs. Neural Computation (*to appear*). 2023.

- [2] He, P., **Emami, P.**, Ranka, S., Rangarajan, A. Learning Canonical Embeddings for Unsupervised Shape Correspondence with Locally Linear Transformations. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023.
- [3] **Emami, P.**, Perreault, A., Law, J., Biagioni, D., John, PCS. Plug & Play Directed Evolution of Proteins with Gradient-based Discrete MCMC. Machine Learning: Science & Technology. 2023. [Github].
- [4] He, P., & **Emami, P.**, & Ranka, S., & Rangarajan, A. Learning Scene Dynamics From Point Cloud Sequences. IJCV Special Issue on 3D Vision. 2021.
- [5] **Emami, P.**, & Elefteriadou, L., & Ranka, S. Long-range Multi-Object Tracking at Traffic Intersections on Low-Power Devices. IEEE Transactions on Intelligent Transportation Systems. 2021. [UFTI article]
- [6] **Emami, P.**, & Pardalos, P. M., & Elefteriadou, L., & Ranka, S. Machine Learning Methods for Data Association in Multi-Object Tracking. ACM Computing Surveys, 53, 4, Article 69. 2020.
- [7] Pourmehrab, M., **Emami, P.**, Martin-Gasulla, M., Wilson, J., Elefteriadou, L., Ranka, S. Signalized Intersection Performance with Automated and Conventional Vehicles: A Comparative Study. Journal of Transportation Engineering, Part A: Systems 146.9. 2020.

Preprints

- [1] **Emami, P.**, He, P., Ranka, S., Rangarajan, A. Slot Order Matters for Compositional Scene Understanding. arXiv:2206.01370 [cs.LG], 2022.
- [2] **Emami, P.**, & Ranka, S. Learning Permutations with Sinkhorn Policy Gradient. arXiv:1805.07010 [cs.LG], 2018.

Blog Posts

[1] **Emami, P.** Deep Deterministic Policy Gradients in Tensorflow. https://pemami4911.github.io/blog/2016/08/21/ddpg-rl.html. 2016. > 100K unique views (Google Analytics). [Github]

Professional Activities

Conference and Workshop Reviewing

NeurIPS 2021-present

NeurIPS Datasets & Benchmarks Track 2023-present

NeurIPS Workshops Interp. Inductive Biases and Phys.'20, MLSB'22, MLSB'23

ICML 2021-present

ICLR 2022-present

ICLR NeSY-GEMs Workshop 2023

AISTATS 2023

CVPR 2022

ICCV 2021

IEEE ITSC 2021

TRB Annual Meeting 2020

Journal Reviewing

Earth Science Informatics 2023 Computer Vision and Image Understanding 2021 Transportation Research Record 2021 Optimization Letters 2020

Service

NREL Generative Modeling Workshop Co-Organizer January 2023 NREL ALIS Group Journal Club Organizer 2022—present IEEE ITSC Special Session Chair 2018 UF Informatics Institute Student Data Analysis Seminar Co-Organizer 2017—2019 UF Machine Learning Reading Group Organizer 2016—2018

Skills

• Programming languages: Python, MATLAB, Java, C++, Bash

 \bullet ML frameworks: PyTorch, Tensorflow, RLlib, scikit-learn, OpenCV

• Data analysis: Jupyter, pandas, numpy, matplotlib, seaborn, Inkscape

HPC: Slurm, torch.distributed Traffic Simulation: SUMO, Flow

Mentoring

Fall 2023–present	Saumya Sinha (NREL Postdoc)	CU Boulder
Summer 2023–present	Truc Nguyen (NREL Intern)	Univ. of Florida
Summer 2023–present	Zhaonan Li (NREL Intern)	Columbia
Summer 2022	Aidan Perreault (NREL Intern)	Stanford
Fall 2019–2021	Yury Lebedev (Ph.D.)	Univ. of Florida
Fall 2018–2021	Kevin Chow (B.Sc.)	Univ. of Florida
Summer 2018	Anuran Rouchowdhury (M.Sc)	Univ. of Florida
Summer 2018	Ian Pelakh (B.Sc.)	Univ. of Florida
Fall 2017	Shalaka Naik (M.Sc), Individual Study	Univ. of Florida
Fall 2017	Vivek Gade (M.Sc), Individual Study	Univ. of Florida
Summer 2017	Jabari Wilson (SURF Fellow)	Univ. of Alabama

Teaching & Volunteering

2021	Junior Science, Engineering, and Humanities Symposium, Reviewer	
	Reviewed 7 papers written by high school students for the speaker competition	
Summer 2018	Student Science Training Program, Instructor	
	Designed & taught a 6-week short course on machine learning basics	
2017–2018	Teaching Youth Programming Essentials, Curriculum Lead	
	Responsible for designing and improving the UF TYPE programming curriculum	
2016–2017	Teaching Youth Programming Essentials, Instructor	
	Teach an after school Intro to Programming course at local high schools	
2014–2015	Association of Computer Engineers, Co-Founder and Project Manager	
	Organized and presented at technical and professional development	
	workshops for undergraduate computer engineering students	