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Intelligent Transportation Systems Overview
What is ITS?

ITS - A More Narrow Perspective
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ITS for improved urban mobility

Source: https://www.arch2o0.com/future-urban-mobility/
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ITS for Urban Mobility - Autonomous Vehicles

Estimated Percentage of Autonomous Vehicle Adoption, and Key Milestones
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Source: http://www.vtpi.org/avip.pdf
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ITS for Urban Mobility - Traffic Optimization

Conventional

Controller

Emami, et al.



Intelligent Transportation Systems Overview
ML N CVvN ITS

Traffic Optimization

Conclusions

Machine Learning

Emami, et al.

Overview

Deep Learning

Key applications
Computer Vision Tasks

ML for ITS



Intelligent Transportation Systems Overview

Overview
ML N CVN ITS Deep Learning
Traffic Optimization Key applications
Conclusions Computer Vision Tasks

Machine Learning

Extracting patterns and abstractions from datasets to make

intelligent deC|S|ons on previously unseen data
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Other “Intelligent” Tools

Machine learning is rarely used in isolation, and often overlaps with
the following fields:

@ Discrete and continuous optimization
@ Signal processing

© Distributed systems

@ Control theory

@ And more...!
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Machine Learning for ITS
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Deep neural networks trained on massive datasets are at the cutting-edge
in terms of performance. The theory is lagging behind!

Source: http://yann.lecun.com/exdb/lenet/
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Deep Learning

Why deep learning
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Amount of data

How do data science techniques scale with amount of data?
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ML N Computer Vision

A primary use of ML in ITS is for intelligent perception

Some key tasks
@ Object detection
@ Multi-object tracking
© Activity recognition
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Computer Vision Tasks

Source: https://www.wired.com/story/waymo-launches-self-
driving-minivans-fiat-chrysler/,
http://sitn.hms.harvard.edu/flash /2017 /self-driving-cars-
technology-risks-possibilities/
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Autonomous Vehicles
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Source: https://www.wired.com/story/waymo-launches-self-
driving-minivans-fiat-chrysler/,
http://sitn.hms.harvard.edu/flash /2017 /self-driving-cars-
technology-risks-possibilities/
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Key applications
Computer Vision Tasks

Traffic Surveillance

Use Computer Vision to try to answer these questions:

How many vehicles?
Any driving the wrong way?

Are pedestrians crossing?
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Object detection

© Where are the interesting objects within my field of view?
@ What are the object classes (pedestrian, bicyclist, sedan,
© How many obJects are there?
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Object detection
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icitly /implicitly answer the following questions

© Where are the interesting objects within my field of view? .
@ What are the object classes (pedestrian, bicyclist, sedan, ...)? '-f” J
© How many objects are there? '

e e i T G /R T
For simplicity, we're lumping localization (where in the image are
the objects) and classification (what class) into detection.
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Object Detection with Deep Learning
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Real world challenges

The current best way to handle variations in lighting, orientation,
and scale when deploying is data augmentation.

Source: http://cs231n.github.io/convolutional-networks/
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Multi-object Tracking

Goal is to estimate the trajectories of all objects in a dynamic scene

MOT from a stationary traffic cam MOT using LiDAR from an AV

Source: Luo, et. al. "Fast and Furious: Real Time End-to-End
3D Detection, Tracking and Motion Forecasting With a Single
Convolutional Net.” CVPR 2018.

Emami, et al. ML for ITS



Overview

ML N CVN ITS Deep Learning
Key applications
Computer Vision Tasks

Obstacles to solving MOT

@ Object detectors don't handle partial/full occlusion or drastic
variations in lighting, color, orientation very well

@ Stitching detections together over time into tracks is a hard
discrete optimization (or inference) problem
© Sensors are unreliable/noisy

@ MOT systems are typically overly-complex and contain lots of
hand-tuned problem-specific parameters

Source: Emami, Patrick, et al. " Machine Learning Methods for
Solving Assignment Problems in Multi-Target Tracking.” arXiv
preprint arXiv:1802.06897 (2018).
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Obstacles to solving MOT

@ Object detectors don't handle partial/full occlusion or drastic
variations in lighting, color, orientation very well

@ Stitching detections together over time into tracks is a hard
discrete optimization (or inference) problem

© Sensors are unreliable/noisy

@ MOT systems are typically overly-complex and contain lots of
hand-tuned problem-specific parameters

Interesting research question keeping me up at night

Is there a principled way to learn the concept of object permanence
within an MOT system?

Source: Emami, Patrick, et al. " Machine Learning Methods for
Solving Assignment Problems in Multi-Target Tracking.” arXiv
preprint arXiv:1802.06897 (2018).
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Activity Recognition

Using object detections and trajectories, can we then extract
patterns at the level of behaviors?

@ Pedestrian safety; ID'ing whether a person is walking/about
to walk into the street

@ Vehicle collision prediction

© Multi-agent modeling at traffic intersections and merging
zones for AVs

Emami, et al. ML for ITS



ML N CVvN ITS

Computer Vision Tasks

Collision Prediction

Source: Xiaohui Huang, Sanjay Ranka and Anand Rangarajan.
Real-time Multi-Object Tracking and Road Traffic Safety
Measurement. In preparation.
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Traffic Optimization

Guiding question

Using sensors and edge computing, can we maximize the efficiency
of traffic flow through a road network in real-time?
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Traffic Sensors
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Traffic Optimization Traffic Intersections

Short-term Traffic Flow Prediction

Accurate forecasting of congestion levels enables real-time traffic
planning
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Train a model (e.g., deep network or Random Forest) to predict

next 15-30 minutes of traffic flow.
Source: Polson, Nicholas G., and Vadim O. Sokolov. " Deep
learning for short-term traffic flow prediction.” Transportation
Research Part C: Emerging Technologies 79 (2017): 1-17.
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Traffic Intersection Optimization

Source: Pourmehrab, M., Elefteriadou, L., Ranka, S., &
Martin-Gasulla, M. " Optimizing Signalized Intersections
Performance under Conventional and Automated Vehicles
Traffic.” arXiv:1707.01748 (2017)
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Conclusion

Plenty of challenges when applying ML to ITS
@ Collecting, cleaning, and labeling large-scale datasets
@ Law-makers and policy has to keep up with the tech
© Brittle models that break when applied to new domains

@ Security and privacy
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Conclusions

Conclusion

Plenty of challenges when applying ML to ITS
@ Collecting, cleaning, and labeling large-scale datasets
@ Law-makers and policy has to keep up with the tech
© Brittle models that break when applied to new domains
@ Security and privacy

But we've made great progress!
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Conclusions

Thank you!

Questions?

Twitter: @patrickomid, email: pemami@ufl.edu

Slides available at: https://pemami4911.github.io

Emami, et al. ML for ITS



	Intelligent Transportation Systems Overview
	What is ITS?

	ML   CV  ITS
	Overview
	Deep Learning
	Key applications
	Computer Vision Tasks

	Traffic Optimization
	Overview
	Traffic Flow Prediction
	Traffic Intersections

	Conclusions

