Machine Learning for Intelligent Transportation Systems

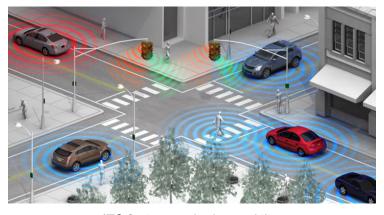
Patrick Emami (CISE), Anand Rangarajan (CISE), Sanjay Ranka (CISE), Lily Elefteriadou (CE)

MALT Lab. UFTI

September 6, 2018

ITS - A Broad Perspective

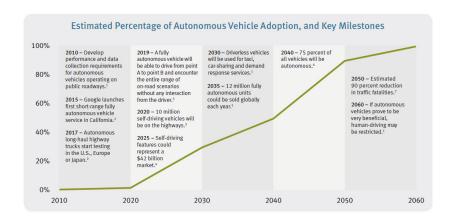
ITS - A More Narrow Perspective



ITS for improved urban mobility

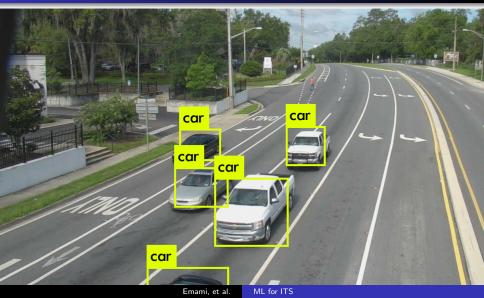
Source: https://www.arch2o.com/future-urban-mobility/

ITS for Urban Mobility - Autonomous Vehicles

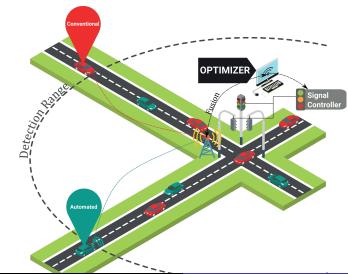


Source: http://www.vtpi.org/avip.pdf

ITS for Urban Mobility - Traffic Surveillance



ITS for Urban Mobility - Traffic Optimization



Emami, et al.

ML for ITS

Intelligent Transportation Systems Overview $\begin{array}{c} \text{ML} \ \cap \ \text{CV} \cap \ \text{ITS} \\ \text{Traffic Optimization} \end{array}$

Overview
Deep Learning
Key applications
Computer Vision Tasks

Machine Learning

Overview
Deep Learning
Key applications
Computer Vision Tasks

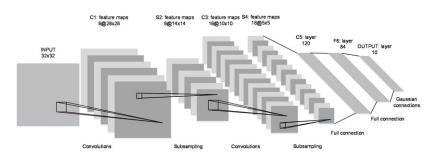
Machine Learning

Other "Intelligent" Tools

Machine learning is rarely used in isolation, and often overlaps with the following fields:

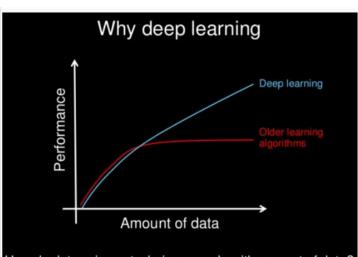
- Discrete and continuous optimization
- Signal processing
- Distributed systems
- Control theory
- And more...!

Machine Learning for ITS



Deep neural networks trained on massive datasets are at the cutting-edge in terms of performance. The theory is lagging behind!

Deep Learning



Source: Andrew N How do data science techniques scale with amount of data?

ML ∩ Computer Vision

A primary use of ML in ITS is for intelligent perception

Some key tasks

- Object detection
- Multi-object tracking
- Activity recognition

Overview
Deep Learning
Key applications
Computer Vision Tasks

Autonomous Vehicles

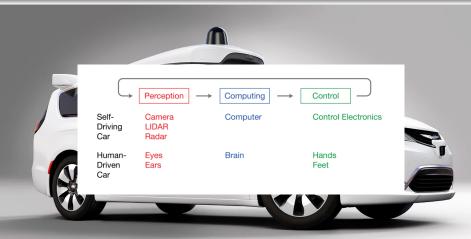
Source: https://www.wired.com/story/waymo-launches-self-driving-minivans-fiat-chrysler/,

http://sitn.hms.harvard.edu/flash/2017/self-driving-cars-

technology-risks-possibilities/

Overview
Deep Learning
Key applications
Computer Vision Task

Autonomous Vehicles

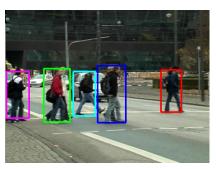


Source: https://www.wired.com/story/waymo-launches-selfdriving-minivans-fiat-chrysler/, http://sitn.hms.harvard.edu/flash/2017/self-driving-cars-

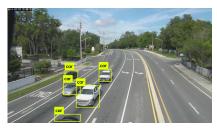
technology-risks-possibilities/

Traffic Surveillance

Use Computer Vision to try to answer these questions:



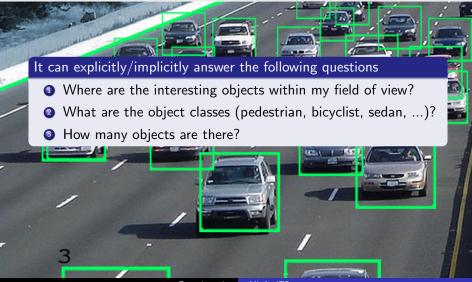
Are pedestrians crossing?



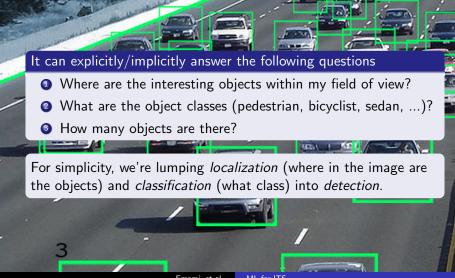
How many vehicles? Any driving the wrong way?

Overview
Deep Learning
Key applications
Computer Vision Tasks

Object detection



Object detection



Object Detection with Deep Learning

Real world challenges

The current best way to handle variations in lighting, orientation, and scale when deploying is data augmentation. Source: http://cs231n.github.io/convolutional-networks/

Multi-object Tracking

Goal is to estimate the trajectories of all objects in a dynamic scene

MOT from a stationary traffic cam

MOT using LiDAR from an AV

Source: Luo, et. al. "Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting With a Single Convolutional Net." CVPR 2018.

Obstacles to solving MOT

- Object detectors don't handle partial/full occlusion or drastic variations in lighting, color, orientation very well
- Stitching detections together over time into tracks is a hard discrete optimization (or inference) problem
- Sensors are unreliable/noisy
- MOT systems are typically overly-complex and contain lots of hand-tuned problem-specific parameters

Source: Emami, Patrick, et al. "Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking." arXiv preprint arXiv:1802.06897 (2018).

Obstacles to solving MOT

- Object detectors don't handle partial/full occlusion or drastic variations in lighting, color, orientation very well
- Stitching detections together over time into tracks is a hard discrete optimization (or inference) problem
- Sensors are unreliable/noisy
- MOT systems are typically overly-complex and contain lots of hand-tuned problem-specific parameters

Interesting research question keeping me up at night

Is there a principled way to learn the concept of object permanence within an MOT system?

Source: Emami, Patrick, et al. "Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking." arXiv preprint arXiv:1802.06897 (2018).

Overview
Deep Learning
Key applications
Computer Vision Tasks

Activity Recognition

Using object detections and trajectories, can we then extract patterns at the level of behaviors?

- Pedestrian safety; ID'ing whether a person is walking/about to walk into the street
- Vehicle collision prediction
- Multi-agent modeling at traffic intersections and merging zones for AVs

Collision Prediction

Source: Xiaohui Huang, Sanjay Ranka and Anand Rangarajan. Real-time Multi-Object Tracking and Road Traffic Safety Measurement. In preparation.

Overview
Traffic Flow Prediction
Traffic Intersections

Traffic Optimization

Guiding question

Using sensors and edge computing, can we maximize the efficiency of traffic flow through a road network in real-time?

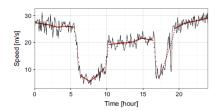
Overview

Traffic Flow Prediction

Traffic Sensors

Short-term Traffic Flow Prediction

Accurate forecasting of congestion levels enables real-time traffic planning

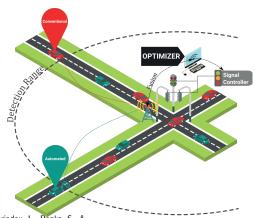


Train a model (e.g., deep network or Random Forest) to predict next 15-30 minutes of traffic flow.

Source: Polson, Nicholas G., and Vadim O. Sokolov. "Deep learning for short-term traffic flow prediction." Transportation Research Part C: Emerging Technologies 79 (2017): 1-17.

Traffic Flow Prediction
Traffic Intersections

Traffic Intersection Optimization



Source: Pourmehrab, M., Elefteriadou, L., Ranka, S., & Martin-Gasulla, M. "Optimizing Signalized Intersections Performance under Conventional and Automated Vehicles

Traffic." arXiv:1707.01748 (2017)

Conclusion

Plenty of challenges when applying ML to ITS

- Collecting, cleaning, and labeling large-scale datasets
- 2 Law-makers and policy has to keep up with the tech
- 3 Brittle models that break when applied to new domains
- Security and privacy

Conclusion

Plenty of challenges when applying ML to ITS

- Collecting, cleaning, and labeling large-scale datasets
- 2 Law-makers and policy has to keep up with the tech
- 3 Brittle models that break when applied to new domains
- Security and privacy

But we've made great progress!

Thank you!

Questions?

Twitter: @patrickomid, email: pemami@ufl.edu

Slides available at: https://pemami4911.github.io