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Long-range Multi-Object Tracking at Traffic
Intersections on Low-Power Devices

Patrick Emami, Lily Elefteriadou, Sanjay Ranka

Abstract—The next generation of intelligent traffic signal
control systems needs multi-object tracking (MOT) algorithms
that can track vehicles hundreds of meters away from traffic
intersections. To facilitate the integration of long-range MOT into
existing traffic infrastructure, the tracker must achieve a good
balance of cost-effectiveness, accuracy, and efficiency. Although
much progress has been made on deep-learning-based MOT
for video, these approaches have limited applicability for edge
deployment since deep neural networks typically require power-
hungry hardware accelerators to achieve real-time performance.
Furthermore, traffic cameras have a field of view limited to near
the intersection. To address these shortcomings, we introduce
a practical MOT framework that fuses tracks from a novel
video MOT neural architecture designed for low-power edge
devices with tracks from a commercially available traffic radar.
The proposed neural architecture achieves high efficiency by
using depthwise separable convolutions to jointly predict object
detections alongside a dense grid of features at a single scale for
spatiotemporal object re-identification. A simple and effective
late fusion strategy is also presented where tracks of distant
vehicles from a traffic radar are handed over to the video tracker
within a region where the sensor fields of view overlap. Our video
tracker is empirically validated on the UA-DETRAC video MOT
benchmark for traffic intersections and the multi-sensor tracker
is evaluated on video and radar data collected and labeled by
the authors at an instrumented traffic intersection.

I. INTRODUCTION

INTELLIGENT traffic intersection control automates inter-
section management and improves adaptability to changing

traffic conditions. These systems assume that a centralized
intersection controller has access to detailed information about
all traffic participants around the intersection in real time which
it uses to make decisions about upcoming signal timings and
autonomous vehicle trajectories [1]–[6]. It is expected that this
will directly help reduce emissions, congestion, and accidents.
However, to properly operate, information about vehicles that
are still far down the road is needed. Early detection and
tracking of vehicles gives the system sufficient time to properly
optimize [6]. However, current multi-object tracking (MOT)
algorithms for traffic intersections are by and large incapable of
supporting this application, since they are either too inaccurate,
too over-costed, or too inefficient for real-world applications. To
achieve our high-level goal of introducing a practical framework
for multi-object tracking at traffic intersections, we propose
a novel convolutional neural network (CNN) for video MOT
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Figure 1: Time to predict object bounding boxes and Re-ID
features for a single video frame as the number of detected
objects increases while running on CPUs. We compare the
proposed joint detection and tracking CNN, MobileDR, with
YOLOv3 DeepSORT and MobileNetV2-SSDLite DeepSORT.
DeepSORT’s Re-ID CNN crops the image around each
bounding box and processes each crop individually, which
causes its runtime to depend linearly on the number of detected
objects. MobileDR predicts Re-ID features in parallel for all
objects with a single forward pass.

on low-power edge devices and a simple fusion algorithm for
multi-sensor tracking with traffic camera and traffic radar.

State-of-the-art video MOT relies on computationally in-
tensive CNNs that hardly run in real-time even when using
a hardware accelerator (e.g., a GPU).1 Accelerators that are
powerful enough to run advanced CNNs have stringent power
and cooling requirements and must be protected from adverse
weather conditions. In most cases, such accelerators will not be
available at the edge. Furthermore, traffic intersection control
requires accurate tracking in regions far (e.g., 200+ meters)
from the intersection, which is beyond the visual field of traffic
cameras. Alternative solutions are based on classic computer
vision techniques or other modalities like loop detectors and
radar, which cannot provide sufficiently accurate results.

In this work, we introduce the MobileDR (MobileNetV2
Detection and Re-ID) CNN architecture for video MOT on
low-power edge devices. MobileDR jointly predicts object
bounding boxes, class labels, and matchable features for
object re-identification (Re-ID). Re-ID features are predicted
as a dense grid at a single resolution for efficient parallel

1To be concrete, assume “real-time” means the ability to process 10 video
frames per second (FPS) or faster and “low-power” refers to achieving roughly
10 FPS running on hardware that consumes 5− 10 W.

https://github.com/pemami4911/MobileDR
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extraction of object-centric features with a single forward pass
(Figure 1). In our experiments, we study the trade-off of speed
vs. performance induced by its lightweight architecture design.

To track vehicles far down the road, we propose a simple
algorithm for combining video tracks with tracks provided by
a traffic radar. The algorithm is based on a late fusion strategy
because our approach is designed to require minimal effort for
deployment at a traffic intersection by leveraging affordable
and commercially available traffic radars. These sensors are
typically shipped with proprietary tracking algorithms and
provide an API for processing a real-time list of tracked objects.
Therefore, we associate and fuse radar outputs with video at the
level of tracks, as opposed to using a mid-level fusion strategy
which would require access to the raw radar detections, or
an early fusion strategy which would require access to raw
acoustic waveforms from which to extract features to combine
with video features for joint detection and association. Our
fusion algorithm is designed around a “hand-off” of radar tracks
of distant objects to video tracks of nearby objects within a
region of overlap between the two sensor’s field of views
(Figures 2, 3). This is motivated by the observation that traffic
radars have a much longer range than traffic cameras which
creates a large region where the two sensors do not overlap.
We also found that the radar was not well-suited for tracking
objects near the intersection relative to video-based tracking,
particularly in moderate-to-heavy congestion.

Our experiments analyze the performance of MobileDR on
video-based detection and MOT as well as the performance
of the multi-sensor MOT framework at an instrumented traffic
intersection. With the same CPU hardware, MobileDR achieves
a 450% increase in FPS over the popular YOLOv3 DeepSORT
(3 vs. 20 FPS). We show that a dense prediction of Re-ID
features removes a linear dependence of the runtime on the
number of detected objects, regardless of the choice of detector
(Figure 1). When augmenting MobileDR with traffic radar, we
demonstrate a +9.8% improvement in MOTA, with most gains
coming from improved tracking of vehicles far away from the
intersection. To summarize, our main contributions are:
• We propose a novel joint detection and tracking CNN,

MobileDR, that should be generally useful for real-time
MOT on low-power edge devices.

• We introduce a multi-sensor MOT framework for traffic
intersections that balances cost-effectiveness, accuracy,
and efficiency, making it practical.

• We provide a thorough real-world evaluation on data
collected from an instrumented traffic intersection.

II. RELATED WORK

A. (Near-)real-time video MOT for traffic surveillance

Hand-crafted pipelines: Methods that run efficiently on
low-cost hardware have typically been based on hand-crafted
image processing pipelines. Key steps include background
subtraction, object segmentation, and motion estimation. See
Wang et al. [7] for an overview. However, it is known that
these methods degrade in the presence of variable illumination,
cluttered environments with stop-and-go traffic, and diverse
interacting objects with distinct motion patterns [8]–[12]. In

general, the accuracy attainable by these methods is much
worse than their deep learning counterparts.

Tracking-by-detection: The advent of powerful object
detectors such as the Deformable Parts Model (DPM) [13], [14]
ushered in the tracking-by-detection MOT paradigm. These
methods first detect objects in each video frame and then match
them over time to form tracks. State of the art tracking-by-
detection methods use CNNs, which are invariant to translations
in object location and are able to learn features that are robust
to changes in illumination, shape, and color. However, the
increase in detection accuracy achieved by CNNs comes at the
price of requiring access to a hardware accelerator such as a
GPU for deployment. For example, the SORT [15] algorithm is
a simple and highly effective tracker that combines a Kalman
Filter [16], the Munkres linear assignment algorithm [17]
with a bounding box intersection-over-union (IOU) cost, and
a powerful CNN for object detection. Trackers that use
the IOU between bounding boxes in adjacent frames as a
similarity measure for matching can be quite effective. V-
IOU [18], which introduces a heuristic for handling missing
bounding boxes in IOU-based tracking, is currently one of
the leading methods on the UA-DETRAC traffic intersection
MOT benchmark [19]. DeepSORT [20] improves over SORT
by adding a metric-learning CNN for learning appearance
features that are used in a cascaded spatiotemporal data
association algorithm. Improvements to DeepSORT have since
been proposed to further boost performance such as filtering out
tracks with low confidence [21]. The video tracker described
in this paper can be seen as an alternative to DeepSORT
that can run in real time without needing a cumbersome
hardware accelerator at the edge. CenterTrack [22] extends
the powerful and efficient CenterNet [23] point-wise object
detection framework for MOT. The key idea of CenterTrack
is to unify detection and tracking into a single CNN where
objects are treated as points and tracking is handled implicitly
by predicting 2D offsets between points in adjacent frames.
Data association is performed by a simple greedy matching on
the predicted points. CenterTrack achieves strong performance
on standard MOT benchmarks while processing 960 × 544
images in 57 ms on a GPU.

Joint detection and tracking: The joint detection and
tracking (JDT) MOT paradigm has recently gained in interest
because it aims to achieve faster FPS by combining the different
deep neural networks used by tracking-by-detection trackers
into a single CNN architecture. The basic idea is to attach
an object detection head and a Re-ID head to a single CNN
backbone and train with a multi-task loss. The detection head
outputs one or more of: bounding boxes, object centers, object
masks, or class scores. The Re-ID head predicts matchable
features for data association. Recently proposed JDT trackers
are Track R-CNN [24], RetinaTrack [25], JDE [26], UMA [27],
and FairMOT [28]. Both our tracker, MobileDR, and FairMOT
predict a dense grid of Re-ID features in parallel for all
objects, unlike the other JDT methods. Like CenterTrack,
FairMOT [28] also uses an anchor-less CenterNet detector
as its backbone; however, CenterTrack does not explicitly
predict Re-ID features for data association. FairMOT achieves
state-of-the-art performance on standard MOT benchmarks by
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Figure 2: a) Tracking-by-detection predicts deep Re-ID features for objects individually, which scales linearly with the number
of detected objects. b) MobileDR is a simple and efficient CNN for joint detection and tracking MOT on low-power edge
devices. It predicts a dense grid of Re-ID features at a single resolution. Matchable features for data association are bi-linearly
interpolated from the centers of the non-maximally suppressed set of predicted bounding boxes. c) The multi-sensor tracking
framework for long-range tracking at traffic intersections.

also introducing better pre-training strategies and optimization
tricks for balancing detection and Re-ID objectives. Differently
from FairMOT, we use MobileNetV2-SSDLite as the detec-
tion backbone, design the Re-ID head using only separable
convolutions for maximum efficiency on edge processers, and
train the Re-ID head independently of the detection branch
with a supervised contrastive loss. Another related tracker is
TubeTK [29], which proposes a novel approach to end-to-end
MOT by regressing bounding box tubes from videos. So-called
BTubes provide better spatiotemporal features and robustness to
occlusion although the tracker itself is more heavy-weight as it
requires using a sliding-window-based 3D CNN for processing
video clips.

MOT at traffic intersections: Some of the aforementioned
trackers have been evaluated on the task of traffic surveillance at
intersections in prior work. The COSMOS [30] project curated
a dataset of birds-eye-view 1920×1080 resolution video of an
intersection and compared various “real-time” video trackers,
varying the detector (Mask R-CNN [31], YOLOv3 [32], and
SSD [33]) as well as the tracker (DAN [34], DeepSORT [20],
and MCUT [30]). Mask R-CNN outperforms the other detectors
but is roughly ten times slower on a GPU. DeepSORT is the
fastest tracker, followed by DAN (37% slower).

B. Real-time multi-sensor MOT for traffic surveillance

Given that single-sensor traffic surveillance is limited by
the choice of sensor, multi-sensor systems have been pro-
posed to overcome this that aim to fuse information from
multiple sensors. In one instance, video MOT and Doppler
radar are fused for tracking oncoming vehicles at a traffic
intersection [35]. The video solution is based on simple blob
tracking whereas our method uses deep learning, and video
and radar measurements are combined with early fusion to
form a single set of tracks whereas we use late fusion. A
system for parking lot and intersection monitoring was recently

introduced [36] that is based on multi-camera tracking. They
equip a group of networked cameras with power-efficient Jetson
Nano GPUs to process video frames in real-time at the edge
with a lightweight CNN. However, their system is designed
for multi-camera tracking using tracking-by-detection. They
avoid solving the challenge of real-time tracking-by-detection
by simply not using CNN features for Re-ID. This lowers the
overall accuracy of the system. Another system fuses multiple
LiDAR sensors [37] placed around an intersection to track
objects within the intersection region with reasonably high
accuracy. In our work, we are interested in tracking vehicles
before they arrive at the intersection; the limited range of
LiDARs make them less suitable for this problem. To the best
of our knowledge, no prior work exists that combines deep-
learning-based video MOT with radar for traffic intersection
surveillance.

III. METHODOLOGY

A. MobileDR
Backbone: For video MOT, we follow the JDT paradigm

which achieves competitive performance compared to state-
of-the-art tracking-by-detection methods while being orders
of magnitude more efficient [24]–[26], [28]. We adapt the
MobileNetV2-SSDLite [38] detector to create MobileDR,
which has three output heads: a regression head for bound-
ing boxes, an object classification head, and a novel fully-
convolutional Re-ID head for object features (Figure 2b).
Our motivation for using a MobileNet CNN backbone is
that the MobileNet CNN family represents the state-of-the-
art in accurate object detection on low-power devices [38]–
[40], i.e., they are capable of running at real-time speeds on
computing devices requiring less than ∼ 10 W. The most recent
iteration is MobileNetV3-SSDLite [40]; it achieves similar
accuracy as V2 with a 27% improvement in latency at the
cost of increased architecture complexity, so we use V2 in
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this work for simplicity and because V2 already achieves
sufficiently low latency for our purposes. MobileNetV2 uses
various architecture optimizations to help it run efficiently on
edge devices. The most important one is depthwise separable
convolution [39], [41], [42]. Essentially, this is a 2D convolution
that has been factorized into two simpler operations. We note
that each separable convolution uses BatchNorm [43] and
ReLU activations. The entire architecture is a stack of inverted
residual blocks (IRBs), which consist of a depthwise separable
convolution and a linear residual bottleneck. The linearity of
the bottleneck layer is important for preserving information,
and the residual connection helps propagate gradients across
multiple layers.

The regression and classification heads in SSDLite are
defined similarly as in the SSD [33] except that they use
separable convolutions. We follow the standard approach of
attaching one set of detection heads after downsampling by 16×
as well as a head after each extra IRB at 32× downsampling.

Re-ID head: In tracking-by-detection, a dedicated CNN is
trained to produce a feature vector for each bounding box.
This requires processing each bounding box individually which
cannot typically be done in real-time if high-end compute
resources are unavailable. For example, suppose 50 objects
are detected in an image. Then, for each of the 50 bounding
boxes, the image is cropped and the resulting patch is passed
to the dedicated feature-extraction CNN. This fails to exploit
the fact that most of the 50 image crops are overlapping.
To take advantage of this, instead the bounding boxes can
be processed “in parallel” by having the CNN produce a
single dense grid of features after one forward pass. With
this grid, for each bounding box we can extract an object
feature by bi-linearly interpolating the feature at the center of
the bounding box (Figure 2c). This removes the dependence
of the runtime on the number of detected objects (Figure 1).
Features are extracted from bounding box centers after running
non-maximum suppression, which is superior to predicting an
embedding for all positive bounding box anchorst [28]. The
latter has issues when multiple anchors correspond to the same
objec.

The Re-ID head consists of seven depthwise separable
convolutions with 3 × 3 kernels and channel dimension
progression 32 → 256 → 512 → 1024 → 512 → 256 → D,
where D is the output Re-ID feature dimension. The Re-
ID head is fully-convolutional as it computes a dense grid
without using any fully-connected layers (Figure 2b). Each grid
coordinate (i, j) corresponds to a feature vector of dimension D.
MobileDR estimates a single grid at 1/8× the input resolution,
attached after the third IRB. This resolution is high enough so
that the model can predict distinct features for each object in a
potentially highly cluttered scene. It has been previously demon-
strated that deep feature matching performs best with features
taken from intermediate CNN layers that have a large receptive
field while still containing discriminative information [44].
We considered feature dimensions of D = {32, 64, 128} and
found 32 to work best based on a sensitivity analysis in our
experiments.

Training details: Jointly balancing losses for detection
and Re-ID is nontrivial because the architecture design is

asymmetric and can lead the model to favor one task over
another [28]. To address this, we train MobileDR following
a curriculum. First, we fine-tune a pretrained MobileNetV2-
SSDLite model on the detection task using the standard
SSD MultiBox training loss for bounding box regression and
classification [33]. Then, we freeze the weights for the base
layers, regression head, and classification head and train the
randomly initialized weights of the Re-ID head using supervised
contrastive learning.

The loss we use for the Re-ID head is the normalized
temperature-scaled cross entropy loss, or NT-Xent loss [45].
This loss function encourages features corresponding to the
same object (positive examples) to have a higher cosine
similarity than features from two different objects (negative
examples), and has been demonstrated to be highly successful
for representation learning despite its simplicity. A key motivat-
ing factor for using this loss is that it does not rely on online
mining of hard negatives, which is computationally expensive.
To obtain positive and negative examples for evaluating the
loss, we obtain them “for free” from track annotations using a
manually-labeled MOT dataset. In detail, the NT-Xent loss is

L = − 1
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with CS := cosine similarity. The I[k 6=i] is an indicator variable
equal to one when k 6= i else it is zero. The numerators consist
of the interpolated point-wise features from a mini-batch of
N randomly sampled pairs of ground truth bounding boxes
{(xt1, xt

′

1 ), . . . , (x
t
N , x

t′

N )} originating from the same object in
a video at frames t < t′. The denominators contain the negative
pairs, which we implement by aligning each bounding box from
one object in the mini-batch with a different object’s bounding
box. The temperature τ regularizes the Re-ID head parameters,
helping to prevent them from getting stuck in poor local minima
early on in training. To further improve generalization we use
random mirroring and photometric data augmentation during
training. During the initial detection training phase we use
photometric distortion, random mirroring, and random image
cropping.

Data association: For each incoming video frame (e.g.,
of size 960 × 540), we first resize it to 300 × 300 and then
use MobileDR to jointly predict bounding boxes, class labels,
and the dense Re-ID feature grid. After applying hard non-
maximum suppression to the bounding boxes based on class
confidence scores and extracting features from the dense
grid with bi-linear interpolation, the bounding boxes and
features are sent to the deep matching cascade algorithm
from DeepSORT [20]. We replace the features from the patch-
based CNN with those extracted from the Re-ID grid, greatly
increasing the tracker speed (Figure 1); see Wojke et al. [20]
for full details of the matching algorithm. The MobileDR video
tracker can be thought of as an alternative to DeepSORT that
is suitable for real-time use on low-power edge devices.
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(a) MobileDR (b) Traffic radar

(c) MobileDR+Radar

Figure 3: The multi-sensor tracker obtains tracks from Mo-
bileDR (3a) and tracks from a traffic radar (3b). We keep
radar tracks farther than a distance ρ = 70 meters from the
intersection (shown as a dotted line) where the radar is most
reliable. 3c) The multi-sensor tracker fuses radar and video
tracks in the region of overlap (circled) to achieve efficient and
high-quality tracking both near and far (up to 200 meters).

B. MobileDR+Radar

Due to the limited visual range of traffic cameras and our
restriction of designing a low-cost and real-time solution, we
propose to make use of off-the-shelf traffic radar to track
vehicles far from traffic intersections. The late fusion strategy
we describe next allows us to make use of affordable and
widely available traffic radars that are easy to deploy at traffic
intersections.

Fusion algorithm: Doppler-based traffic radar uses acoustic
beams to detect moving objects and is able to estimate range
and speed of vehicles at upwards of 200 meters from a traffic
intersection. Off-the-shelf traffic radar units are often shipped
with proprietary tracking algorithms and an API for accessing a
real-time list of tracked objects. However, the tracking accuracy
degrades for vehicles near the sensor if the angle of incidence
between the moving object and the beam is not zero (known
as the “cosine effect” [46]).2 Also, we observed that the radar
can generate a high number of false positive tracks from
spurious detections due to clutter, particularly when there is
moderate-to-heavy congestion. We handle this by removing
radar tracks closer than a pre-set threshold of meters away
from the intersection, leaving a stretch of road where the fields
of view between the video and radar overlap (Figure 3). In this
region, the algorithm identifies which video and radar tracklets
originated from the same object and fuses the matched pairs.

An illustration of the full multi-sensor MOT framework is
shown in Figure 2c. The key steps are summarized as follows:

1) Predict bounding boxes, class scores, and the dense grid
of Re-ID features from the video frame at the current
time step with MobileDR.

2While multi-beam and continuous wave radar have also become com-
mercially available—which in theory helps to address this—in this work we
assume a standard single beam Doppler radar. We believe that more advanced
radars can be used to achieve higher accuracy but at an increased cost.

2) Bi-linearly interpolate object-centric features from the
dense grid using the bounding boxes and after applying
non-maximum suppression.

3) Update a video track array using the deep matching
cascade data association algorithm.

4) Parse the latest set of radar tracks obtained from the
real-time radar API.

5) Project the video and radar tracks into a sensor-centric
world coordinate system with calibration matrix P.

6) Do cross-sensor track-to-track association using relaxed
linear assignment over the last w frames.

7) Fuse the matched tracks with simple averaging.
8) Extend a running estimate of the visible tracks in the

field of view by solving a spatiotemporal assignment
with the newly estimated fused tracks from the current
sliding window.

In detail, the algorithm gathers all video and radar tracklets
within a time window of w seconds that are not deemed to be
spurious. Spurious (i.e., false positive) tracklets are those that
are too short-lived (less than m time steps long). Radar tracklets
whose spatial centroid in world coordinates is closer than ρ
meters to the intersection are considered spurious and removed
(Figure 3b). Then, multi-sensor track association is performed
by running a relaxed linear assignment. This measures the
similarity between N video and M radar tracklets using the
Euclidean dynamic time warping (DTW) distance [47]. The
DTW is an efficient way to measure the similarity of 2D curves
and is invariant to temporal stretching and shrinking. DTW
provides an accurate tracklet similarity measurement as long
as the sensors are calibrated such that tracks can be reasonably
aligned in the world coordinate system; see Section III-C for a
discussion on the calibration assumptions we make. We relax
the one-to-one assignment constraint between the two sets
of sensors tracklets, allowing for tracklets to go unmatched
if the DTW distance is greater than a threshold. Threshold
values are selected using a validation set of manually labeled
video frames. In lieu of not having access to accurate track
uncertainty information from commercial radar sensors, we
handle tracklet fusion by averaging the positions and velocities
of matched tracklets.

We maintain a set of tracks T which represents all objects
believed to exist in the multi-sensor field of view up to but not
including the current time window. A track extension algorithm
based on relaxed linear assignment is used to update T with
the new set of fused and unmatched tracklets. Similarity across
time between candidate pairs of historical tracks and new
tracklets is estimated by the pixel-space Euclidean distance
between temporally adjacent pixel-space object states. We
provide detailed pseudocode and more implementation details
for the multi-sensor tracking algorithm in the appendix.

C. Sensor installation and calibration

To facilitate the calibration process and ensure sufficient
overlap of field of view, we assume that the sensors are mounted
on the same traffic mast arm as close to each other as possible
and oriented in the same direction. We visualize the installation
at the testbed for our experiments in Figure 4a.
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(a) (b)

Figure 4: a) Multi-sensor mounting configuration. b) Inspection
of the estimated camera calibration matrix P by visualizing
world space distances from the camera for each pixel.

Techniques for estimating the camera calibration matrix
P, which projects video tracks from the 2D image plane to
a 3D world coordinate system, have been well-studied for
traffic monitoring applications [48]. Necessary measurements
of quantities such as camera height and line distances are
carried out during the sensor installation process. In this work,
we measured the length of a few lines visible in the camera
image to obtain P. See Figure 4b for a qualitative visualization
of the depth estimation provided by P. The software that
came with our commercial radar sensor provided a tool for
similarly calibrating the radar at the time of installation to
enable extracting tracks in a world coordinate system. Since
the sensors are installed at nearly the same position, we assume
that the origins of both world coordinate systems are the same
(that is, the sensor installation location on the mast arm). We
did not find that this assumption resulted in inaccuracies being
introduced into the multi-sensor tracking in our experiments.

IV. EXPERIMENTS

In this section we evaluate MobileDR and MobileDR+Radar
on data from various traffic intersections. Datasets, evaluation
metrics, and training details for evaluating MobileDR are
provided in Sections IV-A and IV-B. In Sections IV-C and IV-D,
we show that MobileDR achieves strong detection and tracking
precision, but due to its efficiency vs. performance trade-off,
it has lower recall than other less efficient state-of-the-art
architectures. Results from evaluating MobileDR+Radar on
video and radar data collected by the authors at a live traffic
intersection are in Section IV-E, where we verify that adding
the radar sensor helps recover missed tracks, particularly in
regions far from the intersection.

A. UA-DETRAC dataset and evaluation metrics

For assessing the performance of MobileDR we use the
UA-DETRAC [19] video detection and tracking benchmark
which consists of videos captured at 24 different intersections
in China. These video sequences vary in time of day, weather,
traffic level, and amount of occlusion. For the initial training
stage (object detection), we use the UA-DETRAC V3 train,
validation, and test splits. For the second training stage (Re-ID),
we randomly sample 50, 000 pairs of bounding boxes from
tracks in the training sequences and 5, 000 pairs from tracks
in the validation sequences.

For object detection, we follow the UA-DETRAC benchmark
and evaluate MobileDR using average precision (AP). We

use the implementation of the AP metric as provided in the
official evaluation toolkit, which computes the area under
the precision-recall curve with the trapezoidal rule and linear
interpolation. For MOT, again we follow the UA-DETRAC
benchmark and evaluate the tracking performance using the
PR CLEAR MOT metrics [60]. These metrics are similar to
the CLEAR MOT [61] metrics except they aggregate results at
various detection thresholds. The two most important metrics
are the PR-MOTA and PR-IDF1 [62] scores. The PR-MOTA
decreases when the number of false positives, false negatives,
or fragmentations increases and hence is a good indicator of
the strength of the detector. The PR-IDF1 metric measures
the ability of the tracker to properly identify detections, and
balances tracker precision and recall using the harmonic mean;
hence, it is a good indicator of the strength of the Re-ID
features and data association algorithm.

B. Training details

To train MobileDR on the detection task with the UA-
DETRAC V3 data, we initialize the MobileNetV2 and SSDLite
layers with parameters from a pretrained model implemented
in PyTorch [63]3. We use stochastic gradient descent with a
learning rate of 0.01 for the heads and 0.001 for the base layers,
momentum set to 0.9, and weight decay set to 0.0004. We
multiply the learning rate by 0.1 after 80 epochs. The model
is trained for 100 epochs with a batch size of 32 on a single
NVIDIA Titan Xp GPU. We customize the SSDLite anchor
boxes and aspect ratios by calculating average bounding box
statistics with validation data from the UA-DETRAC dataset.
The UA-DETRAC V3 classes are mapped to {background, bus,
car, truck}.

When training the Re-ID head we freeze the parameters of
the base layers and detection heads. This ensures that there
will not be any detection performance degradation. We train
the model for 20 epochs with a learning rate of 0.01 and batch
size of 32. The loss temperature τ is initialized to one and
gets divided by two every five epochs during training until it
reaches 0.0625 where we keep it fixed thereafter.

C. UA-DETRAC detection

Key results: The AP scores on the UA-DETRAC test set
are shown in Table I. We include published results listed on the
benchmark’s web-page for comparison—notably, our model
is the only one which can run in real time on a CPU. The
overall AP score of 58.17% is near the performance of the
powerful Faster R-CNN [55] (58.45%). SpotNet [49] is the
top-performing model which combines segmentation with the
point-based detection approach of CenterNet [23].

Takeaways: MobileDR can detect vehicles relatively well
when there is low amounts of occlusion and good illumination
(as in the easy and medium test splits). As expected due to
its lightweight design, it has more difficulty detecting partially
occluded and small objects and handling low visibility due to
poor weather. We attribute this to the fact that MobileDR has
significantly fewer model parameters (Table III) than other more

3https://github.com/qfgaohao/pytorch-ssd

https://github.com/qfgaohao/pytorch-ssd
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Table I: Image object detection results on the UA-DETRAC test set. As comparison we show published work appearing on the
UA-DETRAC website (October 2020). MobileDR achieves comparable average precision (higher is better) to Faster R-CNN
while being the only listed model to run in real-time on low-power edge devices.

Model
Real-time

@ edge
Overall Easy Medium Hard Cloudy Night Rainy Sunny

SpotNet [49] 86.80% 97.58% 92.57% 76.58% 89.38% 89.53% 80.93% 91.42%

FG-BR_Net [50] 79.96% 93.49% 83.60% 70.78% 87.36% 78.42% 70.50% 89.8%

HAT [51] 78.64% 93.44% 83.09% 68.04% 86.27% 78.00% 67.97% 88.78%

GP-FRCNNm [52] 77.96% 92.74% 82.39% 67.22% 83.23% 77.75% 70.17% 86.56%

R-FCN [53] 69.87% 93.32% 75.67% 54.31% 74.38% 75.09% 56.21% 84.08%

EB [54] 67.96% 89.65% 73.12% 53.64% 72.42% 73.93% 53.40% 83.73%

Faster R-CNN [55] 58.45% 82.75% 63.05% 44.25% 66.29% 69.85% 45.16% 62.34%

YOLOv2 [56] 57.72% 83.28% 62.25% 42.44% 57.97% 64.53% 47.84% 69.75%

RN-D [57] 54.69% 80.98% 59.13% 39.23% 59.88% 54.62% 41.11% 77.53%

MobileDR 3 58.17% 86.03% 63.85% 41.39% 62.59% 66.50% 45.50% 64.00%

Table II: Video multi-object tracking results on the UA-DETRAC test set. As comparison we show published work appearing
on the UA-DETRAC website (October 2020).

Model
Real-time

@ edge
PR-MOTA (↑) PR-MOTP (↓) PR-MT (↑) PR-ML (↓) PR-IDS (↓) PR-FRAG (↓) PR-FP (↓) PR-FN (↓)

Mask R-CNN+V-IOU [18] 30.7% 37.4% 28.7% 23.2% 143.3 1183.1 13387.9 195193.9

EB+DAN [34] 20.2% 26.3% 14.5% 18.1% 518.2 - 9747.8 135978.1

CompACT+FAMNet [58] 19.8% 36.7% 17.1% 18.2% 617.4 970.2 14988.6 164432.6

EB+IOUT [59] 19.4% 28.9% 17.7% 18.4% 2311.3 2445.9 14796.5 171806.8

MobileDR 3 15.4% 30.4% 10.7% 30.1% 397.4 686.3 13937.1 255923.8

accurate and heavyweight detectors. While this may appear as
a shortcoming of the MobileDR architecture, in fact it further
justifies the use of additional sensors such as a Doppler radar to
augment it in practice. We discuss ways to potentially improve
its performance in future work in Section V.

D. UA-DETRAC tracking
Key results: Results for the UA-DETRAC MOT test set are

in Table II. The baselines for comparison in the table are the
published results from the public web server at the time of
writing. We note that each entry uses its own detections, which
greatly influences the tracking performance. The PR-MOTA
achieved by MobileDR is 15.4% and the PR-MOTP is 30.4%.
While this surpasses the PR-MOTP score of EB+IOUT by 1.5%,
the PR-MOTA score is 4% lower. The high PR-MOTP score is
due in part to the strength of the learned Re-ID features; notice
the low number of ID switches (397.4, the second lowest),
fragments (686.3, the lowest), and false positives (13937.1,
third lowest). The relatively high number of false negatives
(i.e., missed tracks) are chiefly caused by detection failures
and explains the low PR-MOTA score.

Takeaways: For a qualitative look at the tracker performance
see Figure 5. This helps illustrate that it successfully detects
and tracks most vehicles that are fully or near-fully visible.
Vehicles that are distant or mostly occluded cause the majority
of tracking failures. The conclusion we draw from the tracking
analysis is that although the MobileDR has high precision

and is effective at tracking vehicles near the intersection, it
tends to miss vehicles that are more challenging to track. This
means that this tracker is well-suited to be integrated into
a multi-sensor tracking framework that can complement the
video tracking by providing missing track information for e.g.,
vehicles that are beyond the range of the video sensor.

E. MobileDR+Radar evaluation
Dataset and metrics: We mounted an Image Sensing Sys-

tems Autoscope traffic camera at an intersection in Gainesville,
FL, which provides a stream of 720 × 1280 RGB frames
at about 30 FPS to a traffic signal mast arm. The Doppler
radar is a Smartmicro Systems Type 29 that sends a list of
tracked objects with IDs at a rate of about 20 Hz to the traffic
intersection cabinet from which it can be accessed. We collected
and manually annotated 4, 324 video frames with track labels
using the Vatic labeler [64]. We stored the stream of radar tracks
during this time period as well. The video sequence is split into
three shorter sequences: an easy sequence (light traffic) which
is frames 1–1, 830, a hard sequence (heavy traffic) which is
frames 1, 830–3, 277, and we set aside frames 3, 227–4, 324 as
a tuning set for analyzing tracker hyperparameters. For certain
experiments, we also separately analyzed model performance
on all tracks whose location in a video frame was closer than
ρ = 70 meters to the intersection (Near) and those tracks farther
than ρ = 70 meters away (Far). We do not train MobileDR on
this data and instead re-use the MobileDR model trained on
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Figure 5: MobileDR tracking from the UA-DETRAC test set. Each column is twenty frames apart (left to right).

Table III: Video-only tracking efficiency comparison using a 6-core Intel i5-9600K CPU on the Gainesville validation sequence.

Tracker Image size # params (M) CPU FPS (↑) IDF1 (↑) MOTA (↑)
MobileDR, 32-D 300× 300 4.448 19.37 57.5% 38.5%
MobileDR, 64-D 300× 300 4.456 19.31 56.6% 38.6%

MobileDR, 128-D 300× 300 4.473 20.99 56.4% 37.5%
DeepSORT 320× 320 73.442 3.51 55.0% 44.2%

Table IV: Ablations and parameter analysis for the multi-sensor tracker using the Gainesville validation sequence. We use
ρ = 70 meters. Latency measures the time in seconds to run cross-sensor track association and fusion using w frames.

No radar < ρ Window size (frames) Near (< ρ) IDF1/MOTA Far (≥ ρ) IDF1/MOTA Both, IDF1/MOTA Latency (↓)
20 63.1%/41.3% 45.7%/34.0% 45.6%/36.4% -

3 10 74.4%/64.1% 41.7%/36.2% 41.8%/43.6% 0.071 s
3 20 75.7%/65.2% 46.2%/35.5% 46.5%/43.3% 0.077 s
3 30 73.9%/62.4% 52.9%/39.5% 53.5%/45.5% 0.072 s
3 40 79.4%/63.6% 49.3%/38.2% 53.3%/45.2% 0.080 s

the larger UA-DETRAC dataset. This allows us to also explore
the generalization abilities of MobileDR since the Gainesville
data is recorded on a different continent and with a different
traffic camera than the UA-DETRAC data. We rely on the
standard CLEAR MOT metrics at a detection threshold of 0.3
for easy interpretation of the tracking results.

We compare MobileDR+Radar against DeepSORT, Mo-
bileDR (without radar), radar alone, and a simple baseline
that replicates a classic real-time video surveillance tracking
pipeline of Mixture-of-Gaussians (MoG) background subtrac-
tion followed by blob tracking. Blob tracking is accomplished
by first running blob detection on the MoG foreground mask,
then using a Kalman Filter to obtain a set of blob track
hypotheses, and finally applying the Munkres [17] linear
assignment algorithm for data association. This baseline is
implemented with OpenCV [65] and represents a simple MOT

algorithm that practitioners may attempt to use in absence of
a GPU. See the appendix for more details.

Efficiency comparison: First, we compare the number of
model parameters and tracking latency for MobileDR with Re-
ID output dimensions {32, 64, 128} against DeepSORT [20]
in Table III. All of the evaluation is conducted on a single
PC with 32 GB of RAM and a 6-core Intel Core i5-9600K
CPU. MobileDR achieves a 450% increase (3.5 vs. 19.37) in
FPS over DeepSORT and a 94% decrease in the number of
model parameters. We note that when deploying MobileDR
on an edge device as opposed to a PC, one should expect a
slightly lower FPS. We use the 32-dim features for all other
experiments since it has the smallest memory footprint.

Sensitivity analysis: For MobileDR+Radar, we analyze the
impact of removing radar tracks closer than ρ = 70 meters to
the intersection as well as the choice of window length w. By
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Table V: Gainesville dataset CLEAR MOT results (key metrics are highlighted). Adding radar increases MobileDR’s MOTA
by +9.8% on the Hard sequence.

Tracker MOTA (↑) MOTP (↓) IDF1 (↑) MT PT ML FP FN Rcll Prcn IDsw Frag

E
as

y

MobileDR+Radar 46.4% 119.6 48.0% 3 12 1 1738 1778 73.8% 73.7% 43 58
MobileDR 44.2% 66.3 60.2% 0 13 3 109 3589 45.9% 96.5% 5 14
Radar only 24.9% 167.0 40.3% 2 13 1 2438 2502 62.3% 62.9% 42 68

OpenCV blob tracking −12.6% 239.5 3.6% 0 0 16 1019 6384 3.9% 19.8% 67 68

DeepSORT† 67.3% 62.0 61.3% 5 10 1 580 1554 76.6% 89.8% 39 34

H
ar

d

MobileDR+Radar 38.4% 133.2 38.2% 1 12 4 989 2520 56.3% 76.6% 42 81
MobileDR 29.6% 58.2 46.8% 1 9 7 194 3864 33.0% 90.7% 1 6
Radar only 19.3% 172.4 33.9% 0 13 4 1499 3109 46.1% 63.9% 43 88

OpenCV blob tracking −19.1% 317.6 3.9% 0 3 14 1297 5512 4.4% 16.2% 55 59

DeepSORT† 45.3% 65.9 59.3% 3 9 5 420 2726 52.7% 87.9% 7 13
† Runs at 3.5 FPS on a CPU, see Table III

comparing the first (ρ = 0, w = 20) and third (ρ = 70, w = 20)
rows of Table IV, we can see that ρ = 0 causes a sharp drop in
Near (< ρ) IDF1 (63.1% vs. 75.7%) and Near (< ρ) MOTA
(41.3% vs. 65.2%). Naturally, there is little change in Far (≥ ρ)
IDF1 and MOTA scores. When we compare window lengths
of {10, 20, 30, 40} frames (equivalently {0.33, 0.67, 1, 1.33}
seconds for a 30 FPS camera), we see an improvement in IDF1
and MOTA as the window length increases with a noticeable
jump occurring between w = 20 and w = 30. Since the
difference in latency of the multi-sensor tracker for the best
performing window size w = 30 compared to the other window
sizes is negligible, we use w = 30 for the remainder of our
experiments. Effectively, the algorithm only has to spend an
additional 0.072 seconds to process each new batch of tracklets
every w frames.

Key results: The tracking performance for the easy and
hard Gainesville sequences are presented in Table V. We
visualize examples of our method’s track association and fusion
in Figure 6. MobileDR+Radar outperforms MobileDR as well
as the radar alone on the easy sequence. In Figures 7a and 7b,
we directly compare the MOTA of these three trackers on the
easy sequences as broken down by “near” and “far” based
on ρ. MobileDR+Radar drastically improves the MOTA of
MobileDR for the “far” region (Figure 7b). Note the increase
in tracking recall from 45.9% to 73.8%. However, adding the
radar decreases the MOTP because the radar tracking is less
precise than the video tracking. Similarly, the lower overall
IDF1 score of the fused solution compared to MobileDR is due
to the less reliable radar sensor; however, notice that the fused
solution’s IDF1 scores are higher than the radar’s IDF1 scores.
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Figure 7: A comparison of CLEAR MOTA scores on the
Gainesville dataset broken down by sequence difficulty and
proximity to the intersection as measured by ρ. Higher is
better. When considering all four scenarios together, the
fused solution is the highest performing.

DeepSORT achieves strong results (MOTA of 67.3% and IDF1
of 61.3%—MobileDR’s IDF1 score of 60.2% is similar) due
to the use of the accurate YOLOv3 detector, but we recall that
it requires a GPU to achieve real-time performance at the edge.

The OpenCV blob tracker has remarkably poor performance
compared to the other trackers. First, it has no way to classify
objects and has to designate any moving blob as a positive
track. Second, the MoG background subtraction loses stationary
objects such as vehicles that are stopped at red lights. Finally,
blob detection and tracking requires applying morphological
operations to remove spurious blobs, which leads to a high
number of false negatives.

In the hard sequence, we see a large +9.8% improvement
in overall MOTA when adding radar to MobileDR. DeepSORT
struggles in denser traffic, and we see that the gap in
MOTA between MobileDR+Radar and DeepSORT has shrunk
compared to the easy sequence. MobileDR+Radar achieves a
lower number of false negatives than DeepSORT and has a
slightly higher tracking recall due to its ability to track vehicles
far from the intersection. Unsurprisingly, the radar and blob
tracker show a decline in overall tracking performance with
denser traffic.

Takeaways: We demonstrated that MobileDR+Radar out-
performs MobileDR and radar alone in terms of MOTA
both near and far from the intersection in dense traffic. In
constrained resource settings such as a real-world deployment
of a intelligent traffic intersection control system, we believe
MobileDR+Radar provides a reasonably good alternative to
heavyweight trackers like YOLOv3 DeepSORT.

F. Failure modes

We explored fusing DeepSORT [20] with the Doppler radar
on the Gainesville dataset to try to improve its tracking
performance at far distances. We found that fusing DeepSORT
with the radar decreased DeepSORT’s performance as measured
by the MOT metrics. The radar produces a high number of false
positives and ID switches relative to DeepSORT, and despite
that the fused result had higher recall (since vehicles far away
from the intersection were tracked more often), the overall
performance was lower. This implies that more powerful deep-
learning-based trackers need to be paired with more advanced
radars (e.g., multi-beam Doppler radar as opposed to the single
beam radar used in this work) to see a benefit from the multi-
sensor fusion.

Since MobileDR is trained with supervised learning using
data from the UA-DETRAC training set, we observe drops
in performance when deploying it without fine-tuning at new
intersections, such as the one in Gainesville. For example, we
notice an increase in spurious detections, which we believe can
be attributed to a distribution shift induced by test images taken
with a traffic camera that is positioned and oriented differently
than the cameras used to create the training set. MobileDR
struggled in dense traffic scenarios during which there were
many vehicles far down the road from the intersection (e.g.,
Figure 7d). Since it is unreasonable to require collecting and
annotating training data at every traffic intersection, new data
augmentation strategies should be explored to help achieve
stronger out-of-distribution generalization.

V. DISCUSSION

In this work, we developed a practical multi-sensor MOT
algorithm that balances cost-effectiveness, accuracy, and effi-
ciency for downstream applications such as intelligent traffic
intersection control. To that end, we introduced MobileDR,
a CNN for real-time video MOT on low-power hardware
that jointly predicts object detections and matchable object
features for data association. MobileDR is combined with a
deep matching cascade in the video tracker, which is then
complemented by an off-the-shelf Doppler radar, resulting in
clear improvements in tracking performance for objects that
are far away from the traffic intersection.

We note that we could further push performance by up-
grading the MobileDR’s detection branch and base layers to
MobileNetV3-SSDLite [40] to further reduce latency. Replacing
the SSDLite heads with CenterNet [23] or SpotNet [49]-style
detection (treating objects as points) should also improve
accuracy because these methods are anchor-free and perform
center-offset regression. In future work, we will integrate
the tracker into a complete intelligent traffic intersection
controller [6] and conduct field experiments to evaluate the
entire system jointly.
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Algorithm 1 Multi-sensor MOT

1: Define: An empty track array T = {}, the temporal
window size w, the set H = {} of hypothesized tracklets
over w; the minimum allowed tracklet length m, radar
distance threshold ρ, joint calibration matrix P

2: while still running do
3: Gather M tracklets from the last w video frames V =

{vi}Mi=1 using MobileDR;
4: for all v ∈ V do
5: if length of vi > m then
6: Project vi to world coordinates with P;
7: else
8: V ← V \ vi;
9: end if

10: end for
11: Gather radar tracklets R = {rj}Nj=1 from radar scans

spanning w;
12: for all r ∈ R do
13: if length of rj ≤ m or rj ≤ ρ then
14: R ← R \ rj ;
15: end if
16: end for
17: Compute matches M and unmatched tracklets U with

relaxed linear assignment on (V,R);
18: H ← H∪ U ;
19: for all matches ∈M do
20: Fuse the spatial and appearance information of match

(vi, rj) into tracklet f using averaging;
21: H ← H∪ f ;
22: end for
23: Update track array T with hypothesis tracks H using

relaxed linear assignment;
24: end while

APPENDIX

First we provide more details on the relaxed linear assign-
ment algorithms used for cross-sensor tracklet matching and
extending the temporal tracklet window. Then we discuss extra
details about the experimental setup. See Algorithm 1 for
pseudo-code of the multi-sensor framework.

A. Cross-sensor tracklet association

The association algorithm measures the relative similarity
between N video and M radar tracklets with the Euclidean
dynamic time warping (DTW) distance [47]. The DTW is an
efficient way to measure the similarity of two 2D curves and
is invariant to temporal stretching and shrinking (see Figure 8
for a visual illustration).

1) Algorithm setup: We define τ to be the maximum
allowable DTW distance between any two pairs of tracklets and
we define ρ to be a threshold for the minimum distance to the
intersection for the centroid of a tracklet. We only fuse video
and radar tracklets farther than ρ meters from the intersection;
unmatched video tracklets farther than ρ are labeled as false
positives, and all radar tracklets closer than ρ are labeled as
false positives (due to their unreliability from the cosine effect).

A
B

C

Figure 8: Euclidean DTW computation between video and radar
tracklets. For one video tracklet (B) and two radar tracklets
(A,C) of length T timestamps, the DTW computes the best
possible spatiotemporal alignment between candidate matches
using dynamic programming and outputs a score. The pair (B,
A) has a higher DTW score than (B, C) because the shapes
of the trajectories are harder to align. Hence, (B,C) is more
likely to be selected.

We set τ to 3, 000 and ρ to 70 meters in our experiments
by visualizing the tracker outputs on a held-out tuning set of
manually collected multi-sensor data. We do not spend much
effort optimizing these parameters as they are likely to be
necessary to adjust depending on the installation location of
the sensors and the geometry of the traffic intersection. Also,
let M be an initially empty set of matched tracklets and U by
an initially empty set of unmatched tracklets.

2) Algorithm steps:
1) Compute D, the N×M DTW Euclidean distance matrix

between video and radar tracklets
2) Ignore potential matches that do not overlap temporally

by setting D[i, j] =∞
3) Augment D by adding an extra row and column with

entries set to τ , so that if no match for the ith video
tracklet exists with DTW distance less than τ it gets
assigned to a “dustbin” column

4) Using a fast linear program solver obtain the relaxed
linear assignment with minimal cost, M, which is a list
of length max(N,M) whose elements are indices from
D specifying the matches

5) Unmatched radar tracklets and all video tracklets closer
than ρ meters are added to U

6) Valid matches where neither the video nor the radar
tracklet has matched to the dustbin are added to M

There is no constraint on how many tracklets can match to
the dustbin row or column, whereas we enforce the one-to-
one assignment constraint for all other rows and columns. As
previously mentioned, unmatched video tracklets (farther than
ρ meters away) are labeled as false positives.

B. Extending tracks from the previous time window

We maintain a set of tracks T which represents all objects
believed to exist in the multi-sensor field of view up to but
not including the current time window. The goal of the track
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extension algorithm is to efficiently update this set with H =
M∪U . To accomplish this, we consider all potential pairings of
A) the track states closest to the start of the current time window
for each track t ∈ T with B) the temporally earliest tracklet
state for all h ∈ H. We use the inverse of the sensor calibration
matrix P to project the world space x, y coordinates from the
selected video and radar tracklet states into the image plane.
Then, we compute a Euclidean distance matrix I based on the
image plane coordinates. Computing this metric in the image
plane makes it easy to capture the intuition that tracklet pairs for
a small object (which appears small because is is far from the
intersection) will have a small pixel distance. However, in world
coordinates the distance between the same pair of tracklets
may be arbitrarily large due to perspective distortion. We do
not include velocity in our distance metric since vehicles that
are turning have a large Euclidean distance between velocity
vectors across time windows. All video tracks in T that do not
have a corresponding radar track are automatically matched
to the track in H with the same video track ID, if one exists,
which we implement by setting the distance I[i, j] = 0. This
helps to keep the video MOT tracks intact and preserves the
performance of the video MOT in the region closer than ρ
meters from the intersection. Let M be the list of matches
from a relaxed linear assignment on I with dustbin threshold
on the pixel distance p. We set this to 30 in our experiments,
using a similar method to choose its value as with τ and ρ.
Tracklets from T that have no match in H are assumed to
have left the field of view and are removed from T . Newly
matched tracklets are assign the fused track ID of their match
in T . We update T with all newly unmatched and matched
tracklets at the end.

C. More experiment details

1) Blob tracker: The blob tracker baseline for the
Gainesville experiment is implemented by chaining together var-
ious OpenCV methods. First, we use the OpenCV Mixture-of-
Gaussians background subtraction module to extract foreground
masks from the input video. Then, we pass the foreground
video to an open source implementation of a blob tracker
(https://github.com/dghy/GUI_Blob_Tracker). This blob tracker
extracts the local extrema from detected blobs in each video
frame, processes them with a Kalman filter, and then uses
the Hungarian algorithm to link the extrema over time into
tracks. We found that background subtraction was a necessary
preprocessing step since the blob tracker tended to pick up the
road, signs, trees, etc.

https://github.com/dghy/GUI_Blob_Tracker
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