Patrick Emami
Research Scientist at the National Renewable Energy Lab

Deep Reinforcement Learning




Recurrent Environment Simulators
// Chiappa, et al., 2017








Variational Information Maximizing Exploration
// Houthooft, et al., 2016 ~ OpenAI


Deep Exploration via Bootstrapped DQN
// Osband, et al., 2016




Neural Fitted Q Iteration
// Riedmiller, M. 2005






Prioritized Experience Replay
// Schaul, Quan, Antonoglou, Silver, 2016


Incentivizing Exploration in Reinforcement Learning with Deep Predictive Models
// Bradly C. Stadie, Sergey Levine, Pieter Abbeel, 2015

Computer Vision


Learning From Demonstrations in the Wild
// Behbahani et al., 2018








Pixel Recursive Super Resolution
// Dahl, Norouzi, Shlens, 2017



Reinforcement Learning Theory


RUDDER: Return Decomposition for Delayed Rewards
// Arjona-Medina, Gillhofer, et al., 2018














Cooperative Inverse Reinforcement Learning
// Hadfield-Menell, et al., 2016

Generative Adversarial Networks







Natural Language Processing






A Neural Probabilistic Language Model
// Bengio, et al., 2003

Deep Learning Theory


What Can Neural Networks Reason About?
// Xu, Li, Zhang, Du, Kawarabayashi, Jegelka, 2020


Convexified Convolutional Neural Networks
// Zhang, Liang, Wainwright, 2016







Artificial General Intelligence







General Machine Learning






The Markov Chain Monte Carlo Revolution
// Persi Diaconis, 2009


Topology and Data
// Gunnar Carlsson, 2009






Intention-Aware Risk Estimation: Field Results
// Lefevre, Vasquez, Laugier, Ibanez-Guzman, 2015